Properties

Label 2.0.4.1-5625.3-c1
Base field \(\Q(\sqrt{-1}) \)
Conductor \((75)\)
Conductor norm \( 5625 \)
CM no
Base change yes: 75.c1,1200.p1
Q-curve yes
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, 0, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}-{x}^{2}-8{x}-7\)
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([1,0]),K([-8,0]),K([-7,0])])
 
gp: E = ellinit([Pol(Vecrev([0,0])),Pol(Vecrev([-1,0])),Pol(Vecrev([1,0])),Pol(Vecrev([-8,0])),Pol(Vecrev([-7,0]))], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,0],K![1,0],K![-8,0],K![-7,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((75)\) = \((-i-2)^{2}\cdot(2i+1)^{2}\cdot(3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5625 \) = \(5^{2}\cdot5^{2}\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1875)\) = \((-i-2)^{4}\cdot(2i+1)^{4}\cdot(3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3515625 \) = \(5^{4}\cdot5^{4}\cdot9\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{102400}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 3.27460309111282 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 3.27460309111282 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-i-2)\) \(5\) \(1\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((2i+1)\) \(5\) \(1\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((3)\) \(9\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 5625.3-c consists of curves linked by isogenies of degree 5.

Base change

This curve is the base change of 75.c1, 1200.p1, defined over \(\Q\), so it is also a \(\Q\)-curve.