# Properties

 Label 2.0.4.1-5625.3-b2 Base field $$\Q(\sqrt{-1})$$ Conductor $$(75)$$ Conductor norm $$5625$$ CM no Base change no Q-curve yes Torsion order $$2$$ Rank $$0$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Base field$$\Q(\sqrt{-1})$$

Generator $$i$$, with minimal polynomial $$x^{2} + 1$$; class number $$1$$.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))

gp: K = nfinit(Pol(Vecrev([1, 0, 1])));

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);

## Weierstrass equation

$${y}^2+i{x}{y}+i{y}={x}^{3}+\left(2625i+9875\right){x}-367500i+151477$$
sage: E = EllipticCurve([K([0,1]),K([0,0]),K([0,1]),K([9875,2625]),K([151477,-367500])])

gp: E = ellinit([Pol(Vecrev([0,1])),Pol(Vecrev([0,0])),Pol(Vecrev([0,1])),Pol(Vecrev([9875,2625])),Pol(Vecrev([151477,-367500]))], K);

magma: E := EllipticCurve([K![0,1],K![0,0],K![0,1],K![9875,2625],K![151477,-367500]]);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 Conductor: $$(75)$$ = $$(-i-2)^{2}\cdot(2i+1)^{2}\cdot(3)$$ sage: E.conductor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor norm: $$5625$$ = $$5^{2}\cdot5^{2}\cdot9$$ sage: E.conductor().norm()  gp: idealnorm(ellglobalred(E)[1])  magma: Norm(Conductor(E)); Discriminant: $$(344326171875i-301640625000)$$ = $$(-i-2)^{10}\cdot(2i+1)^{22}\cdot(3)$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); Discriminant norm: $$209547579288482666015625$$ = $$5^{10}\cdot5^{22}\cdot9$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); j-invariant: $$\frac{117751185817608007}{457763671875} i - \frac{2360548126387992}{152587890625}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$

## Mordell-Weil group

 Rank: $$0$$ Torsion structure: $$\Z/2\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); Torsion generator: $\left(60 i - \frac{23}{4} : \frac{19}{8} i + 30 : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## BSD invariants

 Analytic rank: $$0$$ sage: E.rank()  magma: Rank(E); Mordell-Weil rank: $$0$$ Regulator: $$1$$ Period: $$0.111785085630876$$ Tamagawa product: $$16$$  =  $$2^{2}\cdot2^{2}\cdot1$$ Torsion order: $$2$$ Leading coefficient: $$1.78856137009402$$ Analytic order of Ш: $$4$$ (rounded)

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$(-i-2)$$ $$5$$ $$4$$ $$I_4^{*}$$ Additive $$1$$ $$2$$ $$10$$ $$4$$
$$(2i+1)$$ $$5$$ $$4$$ $$I_{16}^{*}$$ Additive $$1$$ $$2$$ $$22$$ $$16$$
$$(3)$$ $$9$$ $$1$$ $$I_{1}$$ Split multiplicative $$-1$$ $$1$$ $$1$$ $$1$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$2$$ 2B

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 4, 8 and 16.
Its isogeny class 5625.3-b consists of curves linked by isogenies of degrees dividing 16.

## Base change

This curve is not the base change of an elliptic curve defined over $$\Q$$. It is a $$\Q$$-curve.