Properties

Label 2.0.4.1-5202.2-d3
Base field \(\Q(\sqrt{-1}) \)
Conductor norm \( 5202 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}-i{x}^{2}+\left(-54i-70\right){x}+141i-971\)
sage: E = EllipticCurve([K([1,0]),K([0,-1]),K([0,0]),K([-70,-54]),K([-971,141])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,-1]),Polrev([0,0]),Polrev([-70,-54]),Polrev([-971,141])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,-1],K![0,0],K![-70,-54],K![-971,141]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((51i+51)\) = \((i+1)\cdot(3)\cdot(i+4)\cdot(i-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5202 \) = \(2\cdot9\cdot17\cdot17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((140240871i-398264865)\) = \((i+1)\cdot(3)\cdot(i+4)\cdot(i-4)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 178282404592306866 \) = \(2\cdot9\cdot17\cdot17^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{461275687224792005}{3495733423378566} i + \frac{140679328163848447}{1165244474459522} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{166}{25} i - \frac{87}{25} : -\frac{1574}{125} i + \frac{1343}{125} : 1\right)$
Height \(0.57806728202429234250753181450867660161\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-7 i - \frac{33}{4} : \frac{7}{2} i + \frac{33}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.57806728202429234250753181450867660161 \)
Period: \( 0.50918407614522534410697783614502854888 \)
Tamagawa product: \( 12 \)  =  \(1\cdot1\cdot1\cdot( 2^{2} \cdot 3 )\)
Torsion order: \(2\)
Leading coefficient: \( 1.7660559296839243555352182127137366381 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((i+1)\) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((3)\) \(9\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((i+4)\) \(17\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((i-4)\) \(17\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 5202.2-d consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.