Properties

Label 2.0.4.1-50625.3-f2
Base field \(\Q(\sqrt{-1}) \)
Conductor norm \( 50625 \)
CM yes (\(-3\))
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}-4219\)
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([1,0]),K([0,0]),K([-4219,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([1,0]),Polrev([0,0]),Polrev([-4219,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,0],K![1,0],K![0,0],K![-4219,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(\frac{39}{4} : \frac{459}{8} i - \frac{1}{2} : 1\right)$$3.0224353582450591452607257416663459501$$\infty$

Invariants

Conductor: $\frak{N}$ = \((225)\) = \((-i-2)^{2}\cdot(2i+1)^{2}\cdot(3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 50625 \) = \(5^{2}\cdot5^{2}\cdot9^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-7688671875$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-7688671875)\) = \((-i-2)^{8}\cdot(2i+1)^{8}\cdot(3)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 59115675201416015625 \) = \(5^{8}\cdot5^{8}\cdot9^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( 0 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z[(1+\sqrt{-3})/2]\)    (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $N(\mathrm{U}(1))$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 3.0224353582450591452607257416663459501 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 6.0448707164901182905214514833326919002 \)
Global period: $\Omega(E/K)$ \( 0.632260610045160503177074303923039178440 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)  =  \(1\cdot1\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 3.8219336468521686525343055438940322977 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 3.821933647 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 0.632261 \cdot 6.044871 \cdot 2 } { {1^2 \cdot 2.000000} } \approx 3.821933647$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-i-2)\) \(5\) \(1\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((2i+1)\) \(5\) \(1\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((3)\) \(9\) \(2\) \(III^{*}\) Additive \(1\) \(2\) \(9\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2
\(5\) 5Ns.2.1

For all other primes \(p\), the image is the normalizer of a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 50625.3-f consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 225.d1
\(\Q\) 3600.b2