Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(97 i + 135 : -1804 i - 1369 : 1\right)$ | $1.8976346897089200573843111152390659454$ | $\infty$ |
$\left(\frac{59}{2} i : -\frac{61}{4} i + \frac{59}{4} : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((225)\) | = | \((-i-2)^{2}\cdot(2i+1)^{2}\cdot(3)^{2}\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 50625 \) | = | \(5^{2}\cdot5^{2}\cdot9^{2}\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||||
Discriminant: | $\Delta$ | = | $-15377343750i+7688671875$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-15377343750i+7688671875)\) | = | \((-i-2)^{9}\cdot(2i+1)^{8}\cdot(3)^{9}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 295578376007080078125 \) | = | \(5^{9}\cdot5^{8}\cdot9^{9}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||||
j-invariant: | $j$ | = | \( -\frac{8722944}{125} i - \frac{10158912}{125} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 1.8976346897089200573843111152390659454 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 3.7952693794178401147686222304781318908 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 0.415537044955212488564150176450963449800 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 16 \) = \(2\cdot2^{2}\cdot2\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.1541500454645848616812139265948477365 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$\displaystyle 3.154150045 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 0.415537 \cdot 3.795269 \cdot 16 } { {2^2 \cdot 2.000000} } \approx 3.154150045$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((-i-2)\) | \(5\) | \(2\) | \(I_{3}^{*}\) | Additive | \(1\) | \(2\) | \(9\) | \(3\) |
\((2i+1)\) | \(5\) | \(4\) | \(I_{2}^{*}\) | Additive | \(1\) | \(2\) | \(8\) | \(2\) |
\((3)\) | \(9\) | \(2\) | \(III^{*}\) | Additive | \(1\) | \(2\) | \(9\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(3\) | 3B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3 and 6.
Its isogeny class
50625.3-d
consists of curves linked by isogenies of
degrees dividing 6.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.