Properties

Label 2.0.4.1-40000.3-b1
Base field \(\Q(\sqrt{-1}) \)
Conductor norm \( 40000 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i+52\right){x}-177i\)
sage: E = EllipticCurve([K([1,1]),K([0,-1]),K([1,1]),K([52,-1]),K([0,-177])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([1,1]),Polrev([52,-1]),Polrev([0,-177])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,-1],K![1,1],K![52,-1],K![0,-177]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((200)\) = \((i+1)^{6}\cdot(-i-2)^{2}\cdot(2i+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 40000 \) = \(2^{6}\cdot5^{2}\cdot5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3125000)\) = \((i+1)^{6}\cdot(-i-2)^{8}\cdot(2i+1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 9765625000000 \) = \(2^{6}\cdot5^{8}\cdot5^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -5000 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-4 i : 14 i - 15 : 1\right)$
Height \(0.19637779133168667685371410477367146271\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.19637779133168667685371410477367146271 \)
Period: \( 1.0639399808954382081491386800466204358 \)
Tamagawa product: \( 9 \)  =  \(1\cdot3\cdot3\)
Torsion order: \(1\)
Leading coefficient: \( 3.7608153040390153307100844263779010253 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((i+1)\) \(2\) \(1\) \(II\) Additive \(1\) \(6\) \(6\) \(0\)
\((-i-2)\) \(5\) \(3\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((2i+1)\) \(5\) \(3\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5Ns.2.1

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 40000.3-b consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 800.h1
\(\Q\) 800.b1