Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
36100.2-a1 |
36100.2-a |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
36100.2 |
\( 2^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 5^{2} \cdot 19^{4} \) |
$2.46346$ |
$(a+1), (-a-2), (2a+1), (19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.091953189$ |
$2.468147671$ |
2.695101721 |
\( \frac{3538944}{1805} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -8\) , \( -3\bigr] \) |
${y}^2={x}^{3}-8{x}-3$ |
36100.2-a2 |
36100.2-a |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
36100.2 |
\( 2^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 5^{4} \cdot 19^{2} \) |
$2.46346$ |
$(a+1), (-a-2), (2a+1), (19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.545976594$ |
$2.468147671$ |
2.695101721 |
\( \frac{472058064}{475} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -i + 25\) , \( -38 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-i+25\right){x}-38i$ |
36100.2-b1 |
36100.2-b |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
36100.2 |
\( 2^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( 2^{4} \cdot 5^{20} \cdot 19^{4} \) |
$2.46346$ |
$(a+1), (-a-2), (2a+1), (19)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{3} \cdot 3 \) |
$4.337753908$ |
$0.284578285$ |
3.703291711 |
\( \frac{298091207216}{3525390625} \) |
\( \bigl[i + 1\) , \( 0\) , \( 0\) , \( -221\) , \( 5535 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}-221{x}+5535i$ |
36100.2-b2 |
36100.2-b |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
36100.2 |
\( 2^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 5^{10} \cdot 19^{8} \) |
$2.46346$ |
$(a+1), (-a-2), (2a+1), (19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \cdot 3 \) |
$2.168876954$ |
$0.284578285$ |
3.703291711 |
\( \frac{5405726654464}{407253125} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -921\) , \( 10346\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-921{x}+10346$ |
36100.2-b3 |
36100.2-b |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
36100.2 |
\( 2^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 5^{25} \cdot 19^{2} \) |
$2.46346$ |
$(a+1), (-a-2), (2a+1), (19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \cdot 3 \) |
$8.675507817$ |
$0.142289142$ |
3.703291711 |
\( -\frac{194999987787137339356}{1811981201171875} a + \frac{1433248763620878568}{95367431640625} \) |
\( \bigl[i + 1\) , \( 0\) , \( 0\) , \( -3895 i - 3831\) , \( 143076 i + 59413\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-3895i-3831\right){x}+143076i+59413$ |
36100.2-b4 |
36100.2-b |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
36100.2 |
\( 2^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( 2^{8} \cdot 5^{25} \cdot 19^{2} \) |
$2.46346$ |
$(a+1), (-a-2), (2a+1), (19)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \cdot 3 \) |
$8.675507817$ |
$0.142289142$ |
3.703291711 |
\( \frac{194999987787137339356}{1811981201171875} a + \frac{1433248763620878568}{95367431640625} \) |
\( \bigl[i + 1\) , \( 0\) , \( 0\) , \( 3895 i - 3831\) , \( 143076 i - 59413\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(3895i-3831\right){x}+143076i-59413$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.