Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-3528.1-c
Conductor 3528.1
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 3528.1-c over \(\Q(\sqrt{-1}) \)

Isogeny class 3528.1-c contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
3528.1-c1 \( \bigl[0\) , \( -1\) , \( 0\) , \( -7\) , \( 52\bigr] \)
3528.1-c2 \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 98\) , \( -29 i\bigr] \)
3528.1-c3 \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 63\) , \( 202 i\bigr] \)
3528.1-c4 \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 1008\) , \( 12487 i\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph