Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-3528.1-b
Conductor 3528.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 3528.1-b over \(\Q(\sqrt{-1}) \)

Isogeny class 3528.1-b contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
3528.1-b1 \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( -12\) , \( 6 i\bigr] \)
3528.1-b2 \( \bigl[i + 1\) , \( 0\) , \( 0\) , \( 3\) , \( 0\bigr] \)
3528.1-b3 \( \bigl[0\) , \( 1\) , \( 0\) , \( -7\) , \( -10\bigr] \)
3528.1-b4 \( \bigl[i + 1\) , \( 0\) , \( 0\) , \( 38\) , \( -84 i\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph