Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-31752.1-h
Conductor 31752.1
Rank \( 1 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 31752.1-h over \(\Q(\sqrt{-1}) \)

Isogeny class 31752.1-h contains 2 curves linked by isogenies of degree 2.

Curve label Weierstrass Coefficients
31752.1-h1 \( \bigl[i + 1\) , \( i\) , \( 0\) , \( -21\) , \( -98 i\bigr] \)
31752.1-h2 \( \bigl[0\) , \( 0\) , \( 0\) , \( -54\) , \( -135\bigr] \)

Rank

Rank: \( 1 \)

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph