# Properties

 Label 2.0.4.1-29241.1-c2 Base field $$\Q(\sqrt{-1})$$ Conductor norm $$29241$$ CM no Base change yes Q-curve yes Torsion order $$1$$ Rank $$0$$

# Related objects

Show commands: Magma / PariGP / SageMath

## Base field$$\Q(\sqrt{-1})$$

Generator $$i$$, with minimal polynomial $$x^{2} + 1$$; class number $$1$$.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))

gp: K = nfinit(Polrev([1, 0, 1]));

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);

## Weierstrass equation

$${y}^2+i{y}={x}^{3}+177{x}-1035$$
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([0,1]),K([177,0]),K([-1035,0])])

gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([0,1]),Polrev([177,0]),Polrev([-1035,0])], K);

magma: E := EllipticCurve([K![0,0],K![0,0],K![0,1],K![177,0],K![-1035,0]]);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 Conductor: $$(171)$$ = $$(3)^{2}\cdot(19)$$ sage: E.conductor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor norm: $$29241$$ = $$9^{2}\cdot361$$ sage: E.conductor().norm()  gp: idealnorm(ellglobalred(E)[1])  magma: Norm(Conductor(E)); Discriminant: $$(-817887699)$$ = $$(3)^{16}\cdot(19)$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); Discriminant norm: $$668940288175514601$$ = $$9^{16}\cdot361$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); j-invariant: $$\frac{841232384}{1121931}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$

## Mordell-Weil group

 Rank: $$0$$ Torsion structure: trivial sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T);

## BSD invariants

 Analytic rank: $$0$$ sage: E.rank()  magma: Rank(E); Mordell-Weil rank: $$0$$ Regulator: $$1$$ Period: $$0.45294305006822680619934140623342811361$$ Tamagawa product: $$4$$  =  $$2^{2}\cdot1$$ Torsion order: $$1$$ Leading coefficient: $$1.8117722002729072247973656249337124544$$ Analytic order of Ш: $$1$$ (rounded)

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$(3)$$ $$9$$ $$4$$ $$I_{10}^{*}$$ Additive $$1$$ $$2$$ $$16$$ $$10$$
$$(19)$$ $$361$$ $$1$$ $$I_{1}$$ Split multiplicative $$-1$$ $$1$$ $$1$$ $$1$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$5$$ 5B.4.1

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 5.
Its isogeny class 29241.1-c consists of curves linked by isogenies of degree 5.

## Base change

This elliptic curve is a $$\Q$$-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
$$\Q$$ 171.c2
$$\Q$$ 2736.h2