Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
gp: K = nfinit(Polrev([1, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([0,1]),K([6,0]),K([0,0])])
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([0,1]),Polrev([6,0]),Polrev([0,0])], K);
magma: E := EllipticCurve([K![0,0],K![0,0],K![0,1],K![6,0],K![0,0]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((171)\) | = | \((3)^{2}\cdot(19)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 29241 \) | = | \(9^{2}\cdot361\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-13851)\) | = | \((3)^{6}\cdot(19)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 191850201 \) | = | \(9^{6}\cdot361\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{32768}{19} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(2\) | |
Generators | $\left(\frac{3}{2} i + 1 : -\frac{11}{4} i - \frac{9}{4} : 1\right)$ | $\left(-2 : -5 i : 1\right)$ |
Heights | \(0.81473384943715466475162872243112136300\) | \(0.22596686882569487875122626488548028396\) |
Torsion structure: | trivial | |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
|
BSD invariants
Analytic rank: | \( 2 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(2\) | ||
Regulator: | \( 0.069215548818119178379315146623470120972 \) | ||
Period: | \( 2.8059270253215350687641816638388309024 \) | ||
Tamagawa product: | \( 4 \) = \(2^{2}\cdot1\) | ||
Torsion order: | \(1\) | ||
Leading coefficient: | \( 3.1074204640195622165456095010284428275 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((3)\) | \(9\) | \(4\) | \(I_0^{*}\) | Additive | \(1\) | \(2\) | \(6\) | \(0\) |
\((19)\) | \(361\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3B.1.2 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3 and 9.
Its isogeny class
29241.1-b
consists of curves linked by isogenies of
degrees dividing 9.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 171.b3 |
\(\Q\) | 2736.c3 |