Properties

Label 2.0.4.1-29241.1-b2
Base field \(\Q(\sqrt{-1}) \)
Conductor norm \( 29241 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 3 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+i{y}={x}^{3}-84{x}-315\)
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([0,1]),K([-84,0]),K([-315,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([0,1]),Polrev([-84,0]),Polrev([-315,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,0],K![0,1],K![-84,0],K![-315,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((171)\) = \((3)^{2}\cdot(19)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 29241 \) = \(9^{2}\cdot361\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5000211)\) = \((3)^{6}\cdot(19)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25002110044521 \) = \(9^{6}\cdot361^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{89915392}{6859} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(-\frac{21}{2} i - 11 : \frac{61}{4} i - \frac{225}{4} : 1\right)$ $\left(-5 : -5 i : 1\right)$
Heights \(2.4442015483114639942548861672933640890\) \(0.67790060647708463625367879465644085186\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-3 : -10 i : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.62293993936307260541383631961123108874 \)
Period: \( 0.93530900844051168958806055461294363412 \)
Tamagawa product: \( 12 \)  =  \(2^{2}\cdot3\)
Torsion order: \(3\)
Leading coefficient: \( 3.1074204640195622165456095010284428275 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3)\) \(9\) \(4\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)
\((19)\) \(361\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 29241.1-b consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 171.b2
\(\Q\) 2736.c2