Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
29241.1-a1 29241.1-a \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 19^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.544114833$ 2.176459332 \( \frac{67419143}{390963} \) \( \bigl[i\) , \( 1\) , \( i\) , \( 77\) , \( 790\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}+77{x}+790$
29241.1-a2 29241.1-a \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 19^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.176459332$ 2.176459332 \( \frac{389017}{57} \) \( \bigl[i\) , \( 1\) , \( i\) , \( -13\) , \( -20\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-13{x}-20$
29241.1-a3 29241.1-a \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 19^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.088229666$ 2.176459332 \( \frac{30664297}{3249} \) \( \bigl[i\) , \( 1\) , \( i\) , \( -58\) , \( 142\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-58{x}+142$
29241.1-a4 29241.1-a \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 19^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.544114833$ 2.176459332 \( \frac{115714886617}{1539} \) \( \bigl[i\) , \( 1\) , \( i\) , \( -913\) , \( 10402\bigr] \) ${y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-913{x}+10402$
29241.1-b1 29241.1-b \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 19^{2} \) $2$ $\Z/3\Z$ $\mathrm{SU}(2)$ $5.606459454$ $0.311769669$ 3.107420464 \( -\frac{50357871050752}{19} \) \( \bigl[0\) , \( 0\) , \( i\) , \( -6924\) , \( -221760\bigr] \) ${y}^2+i{y}={x}^{3}-6924{x}-221760$
29241.1-b2 29241.1-b \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 19^{2} \) $2$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.622939939$ $0.935309008$ 3.107420464 \( -\frac{89915392}{6859} \) \( \bigl[0\) , \( 0\) , \( i\) , \( -84\) , \( -315\bigr] \) ${y}^2+i{y}={x}^{3}-84{x}-315$
29241.1-b3 29241.1-b \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.069215548$ $2.805927025$ 3.107420464 \( \frac{32768}{19} \) \( \bigl[0\) , \( 0\) , \( i\) , \( 6\) , \( 0\bigr] \) ${y}^2+i{y}={x}^{3}+6{x}$
29241.1-c1 29241.1-c \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 19^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.090588610$ 1.811772200 \( -\frac{9358714467168256}{22284891} \) \( \bigl[0\) , \( 0\) , \( 1\) , \( -39513\) , \( 3023145\bigr] \) ${y}^2+{y}={x}^{3}-39513{x}+3023145$
29241.1-c2 29241.1-c \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 19^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.452943050$ 1.811772200 \( \frac{841232384}{1121931} \) \( \bigl[0\) , \( 0\) , \( i\) , \( 177\) , \( -1035\bigr] \) ${y}^2+i{y}={x}^{3}+177{x}-1035$
29241.1-d1 29241.1-d \(\Q(\sqrt{-1}) \) \( 3^{4} \cdot 19^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.776214705$ 7.104858821 \( -\frac{1404928}{171} \) \( \bigl[0\) , \( 0\) , \( i\) , \( -21\) , \( 41\bigr] \) ${y}^2+i{y}={x}^{3}-21{x}+41$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.