Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
29241.1-a1 29241.1-a Q(1)\Q(\sqrt{-1}) 34192 3^{4} \cdot 19^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.5441148330.544114833 2.176459332 67419143390963 \frac{67419143}{390963} [i \bigl[i , 1 1 , i i , 77 77 , 790] 790\bigr] y2+ixy+iy=x3+x2+77x+790{y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}+77{x}+790
29241.1-a2 29241.1-a Q(1)\Q(\sqrt{-1}) 34192 3^{4} \cdot 19^{2} 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.1764593322.176459332 2.176459332 38901757 \frac{389017}{57} [i \bigl[i , 1 1 , i i , 13 -13 , 20] -20\bigr] y2+ixy+iy=x3+x213x20{y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-13{x}-20
29241.1-a3 29241.1-a Q(1)\Q(\sqrt{-1}) 34192 3^{4} \cdot 19^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0882296661.088229666 2.176459332 306642973249 \frac{30664297}{3249} [i \bigl[i , 1 1 , i i , 58 -58 , 142] 142\bigr] y2+ixy+iy=x3+x258x+142{y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-58{x}+142
29241.1-a4 29241.1-a Q(1)\Q(\sqrt{-1}) 34192 3^{4} \cdot 19^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5441148330.544114833 2.176459332 1157148866171539 \frac{115714886617}{1539} [i \bigl[i , 1 1 , i i , 913 -913 , 10402] 10402\bigr] y2+ixy+iy=x3+x2913x+10402{y}^2+i{x}{y}+i{y}={x}^{3}+{x}^{2}-913{x}+10402
29241.1-b1 29241.1-b Q(1)\Q(\sqrt{-1}) 34192 3^{4} \cdot 19^{2} 22 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 5.6064594545.606459454 0.3117696690.311769669 3.107420464 5035787105075219 -\frac{50357871050752}{19} [0 \bigl[0 , 0 0 , i i , 6924 -6924 , 221760] -221760\bigr] y2+iy=x36924x221760{y}^2+i{y}={x}^{3}-6924{x}-221760
29241.1-b2 29241.1-b Q(1)\Q(\sqrt{-1}) 34192 3^{4} \cdot 19^{2} 22 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 0.6229399390.622939939 0.9353090080.935309008 3.107420464 899153926859 -\frac{89915392}{6859} [0 \bigl[0 , 0 0 , i i , 84 -84 , 315] -315\bigr] y2+iy=x384x315{y}^2+i{y}={x}^{3}-84{x}-315
29241.1-b3 29241.1-b Q(1)\Q(\sqrt{-1}) 34192 3^{4} \cdot 19^{2} 22 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0692155480.069215548 2.8059270252.805927025 3.107420464 3276819 \frac{32768}{19} [0 \bigl[0 , 0 0 , i i , 6 6 , 0] 0\bigr] y2+iy=x3+6x{y}^2+i{y}={x}^{3}+6{x}
29241.1-c1 29241.1-c Q(1)\Q(\sqrt{-1}) 34192 3^{4} \cdot 19^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.0905886100.090588610 1.811772200 935871446716825622284891 -\frac{9358714467168256}{22284891} [0 \bigl[0 , 0 0 , 1 1 , 39513 -39513 , 3023145] 3023145\bigr] y2+y=x339513x+3023145{y}^2+{y}={x}^{3}-39513{x}+3023145
29241.1-c2 29241.1-c Q(1)\Q(\sqrt{-1}) 34192 3^{4} \cdot 19^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.4529430500.452943050 1.811772200 8412323841121931 \frac{841232384}{1121931} [0 \bigl[0 , 0 0 , i i , 177 177 , 1035] -1035\bigr] y2+iy=x3+177x1035{y}^2+i{y}={x}^{3}+177{x}-1035
29241.1-d1 29241.1-d Q(1)\Q(\sqrt{-1}) 34192 3^{4} \cdot 19^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.7762147051.776214705 7.104858821 1404928171 -\frac{1404928}{171} [0 \bigl[0 , 0 0 , i i , 21 -21 , 41] 41\bigr] y2+iy=x321x+41{y}^2+i{y}={x}^{3}-21{x}+41
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.