Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
2888.1-a1 |
2888.1-a |
$1$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
2888.1 |
\( 2^{3} \cdot 19^{2} \) |
\( 2^{4} \cdot 19^{2} \) |
$1.31014$ |
$(a+1), (19)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
|
|
$1$ |
\( 2 \) |
$0.065414869$ |
$6.794444758$ |
1.777830871 |
\( -\frac{1024}{19} \) |
\( \bigl[0\) , \( i\) , \( i + 1\) , \( 0\) , \( 0\bigr] \) |
${y}^2+\left(i+1\right){y}={x}^{3}+i{x}^{2}$ |
2888.1-b1 |
2888.1-b |
$1$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
2888.1 |
\( 2^{3} \cdot 19^{2} \) |
\( 2^{10} \cdot 19^{2} \) |
$1.31014$ |
$(a+1), (19)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
|
|
$1$ |
\( 2 \) |
$0.103366441$ |
$4.606662983$ |
1.904697431 |
\( -\frac{31250}{19} \) |
\( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 2\) , \( -2 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+2{x}-2i$ |
Download displayed columns to
Pari/GP
SageMath
Magma
Oscar
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.