Properties

Label 2.0.4.1-28322.1-a6
Base field \(\Q(\sqrt{-1}) \)
Conductor \((49i-161)\)
Conductor norm \( 28322 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, 0, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-i{x}^{2}+\left(21844i+40957\right){x}-2867579i+2591850\)
sage: E = EllipticCurve([K([1,0]),K([0,-1]),K([1,0]),K([40957,21844]),K([2591850,-2867579])])
 
gp: E = ellinit([Pol(Vecrev([1,0])),Pol(Vecrev([0,-1])),Pol(Vecrev([1,0])),Pol(Vecrev([40957,21844])),Pol(Vecrev([2591850,-2867579]))], K);
 
magma: E := EllipticCurve([K![1,0],K![0,-1],K![1,0],K![40957,21844],K![2591850,-2867579]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((49i-161)\) = \((i+1)\cdot(i+4)^{2}\cdot(7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 28322 \) = \(2\cdot17^{2}\cdot49\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-122630144i-12418560)\) = \((i+1)^{18}\cdot(i+4)^{6}\cdot(7)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 15192372849934336 \) = \(2^{18}\cdot17^{6}\cdot49^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2251439055699625}{25088} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(121 i - \frac{121}{4} : -\frac{121}{2} i + \frac{117}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.106159921025897 \)
Tamagawa product: \( 144 \)  =  \(( 2 \cdot 3^{2} )\cdot2^{2}\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.82175715693229 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((i+1)\) \(2\) \(18\) \(I_{18}\) Split multiplicative \(-1\) \(1\) \(18\) \(18\)
\((i+4)\) \(17\) \(4\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)
\((7)\) \(49\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 6, 9 and 18.
Its isogeny class 28322.1-a consists of curves linked by isogenies of degrees dividing 18.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.