Learn more

Refine search


Results (12 matches)

  Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
28224.1-a1 28224.1-a \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.139949265$ $0.396863609$ 1.666223116 \( \frac{15926924096}{28588707} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 210\) , \( 1764\bigr] \) ${y}^2={x}^{3}+{x}^{2}+210{x}+1764$
28224.1-a2 28224.1-a \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.069974632$ $0.396863609$ 1.666223116 \( \frac{92100460096}{20253807} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 376\) , \( -2338 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+376{x}-2338i$
28224.1-b1 28224.1-b \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $2$ $\Z/4\Z$ $1.779146940$ $2.248837995$ 4.001013241 \( \frac{830584}{7203} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i - 4\) , \( -11 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i-4\right){x}-11i$
28224.1-b2 28224.1-b \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $2$ $\Z/4\Z$ $0.444786735$ $2.248837995$ 4.001013241 \( \frac{3241792}{567} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 12\) , \( -18 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+12{x}-18i$
28224.1-b3 28224.1-b \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $0.444786735$ $2.248837995$ 4.001013241 \( \frac{5088448}{441} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -14\) , \( -24\bigr] \) ${y}^2={x}^{3}+{x}^{2}-14{x}-24$
28224.1-b4 28224.1-b \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $2$ $\Z/2\Z$ $1.779146940$ $2.248837995$ 4.001013241 \( \frac{2438569736}{21} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 56\) , \( -171 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+56{x}-171i$
28224.1-c1 28224.1-c \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.614371403$ $3.047233106$ 3.744265762 \( \frac{8000}{147} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 2\) , \( -4\bigr] \) ${y}^2={x}^{3}+{x}^{2}+2{x}-4$
28224.1-c2 28224.1-c \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.307185701$ $3.047233106$ 3.744265762 \( \frac{1000000}{63} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 8\) , \( 6 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+8{x}+6i$
28224.1-d1 28224.1-d \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $1.640914345$ 3.281828691 \( \frac{23393656}{45927} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( -i - 12\) , \( -23 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(-i-12\right){x}-23i$
28224.1-d2 28224.1-d \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.640914345$ 3.281828691 \( \frac{19248832}{3969} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -22\) , \( -40\bigr] \) ${y}^2={x}^{3}+{x}^{2}-22{x}-40$
28224.1-d3 28224.1-d \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/4\Z$ $1$ $1.640914345$ 3.281828691 \( \frac{306182024}{21609} \) \( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 28\) , \( 49 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+28{x}+49i$
28224.1-d4 28224.1-d \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/4\Z$ $1$ $1.640914345$ 3.281828691 \( \frac{1036433728}{63} \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 84\) , \( 270 i\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+84{x}+270i$
  Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.