Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
gp: K = nfinit(Polrev([1, 0, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([1,0]),K([7,1]),K([-1,4])])
gp: E = ellinit([Polrev([1,1]),Polrev([0,1]),Polrev([1,0]),Polrev([7,1]),Polrev([-1,4])], K);
magma: E := EllipticCurve([K![1,1],K![0,1],K![1,0],K![7,1],K![-1,4]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((36i-27)\) | = | \((2i+1)^{2}\cdot(3)^{2}\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 2025 \) | = | \(5^{2}\cdot9^{2}\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-19386i-32373)\) | = | \((2i+1)^{9}\cdot(3)^{3}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 1423828125 \) | = | \(5^{9}\cdot9^{3}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( 1728 \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z[\sqrt{-1}]\) | (complex multiplication) | |
Geometric endomorphism ring: | \(\Z[\sqrt{-1}]\) | ||
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{U}(1)$ |
Mordell-Weil group
Rank: | \(0\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-\frac{1}{2} i : \frac{1}{4} i - \frac{3}{4} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 2.3742492284222107083026624117715050996 \) | ||
Tamagawa product: | \( 4 \) = \(2\cdot2\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 2.3742492284222107083026624117715050996 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((2i+1)\) | \(5\) | \(2\) | \(III^{*}\) | Additive | \(-1\) | \(2\) | \(9\) | \(0\) |
\((3)\) | \(9\) | \(2\) | \(III\) | Additive | \(1\) | \(2\) | \(3\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .
The image is a Borel subgroup if \(p=2\), a split Cartan subgroup if \(\left(\frac{ -1 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -1 }{p}\right)=-1\).
Isogenies and isogeny class
This curve has no rational isogenies other than endomorphisms. Its isogeny class 2025.3-CMa consists of this curve only.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.