Properties

Label 2.0.4.1-2025.3-CMa1
Base field \(\Q(\sqrt{-1}) \)
Conductor norm \( 2025 \)
CM yes (\(-4\))
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+i{x}^{2}+\left(i+7\right){x}+4i-1\)
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([1,0]),K([7,1]),K([-1,4])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,1]),Polrev([1,0]),Polrev([7,1]),Polrev([-1,4])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,1],K![1,0],K![7,1],K![-1,4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((36i-27)\) = \((2i+1)^{2}\cdot(3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2025 \) = \(5^{2}\cdot9^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-19386i-32373)\) = \((2i+1)^{9}\cdot(3)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1423828125 \) = \(5^{9}\cdot9^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 1728 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z[\sqrt{-1}]\) (complex multiplication)
Geometric endomorphism ring: \(\Z[\sqrt{-1}]\)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{U}(1)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{2} i : \frac{1}{4} i - \frac{3}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.3742492284222107083026624117715050996 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.3742492284222107083026624117715050996 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2i+1)\) \(5\) \(2\) \(III^{*}\) Additive \(-1\) \(2\) \(9\) \(0\)
\((3)\) \(9\) \(2\) \(III\) Additive \(1\) \(2\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

The image is a Borel subgroup if \(p=2\), a split Cartan subgroup if \(\left(\frac{ -1 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -1 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has no rational isogenies other than endomorphisms. Its isogeny class 2025.3-CMa consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.