Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
2025.3-CMc1
2025.3-CMc
$1$
$1$
\(\Q(\sqrt{-1}) \)
$2$
$[0, 1]$
2025.3
\( 3^{4} \cdot 5^{2} \)
\( 3^{18} \cdot 5^{9} \)
$1.19888$
$(2a+1), (3)$
0
$\Z/2\Z$
$\textsf{yes}$
$-4$
$\mathrm{U}(1)$
✓
✓
$1$
\( 2^{2} \)
$1$
$0.791416409$
0.791416409
\( 1728 \)
\( \bigl[i + 1\) , \( i\) , \( 1\) , \( 13 i + 73\) , \( 37 i - 7\bigr] \)
${y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+i{x}^{2}+\left(13i+73\right){x}+37i-7$
2025.3-CMb1
2025.3-CMb
$1$
$1$
\(\Q(\sqrt{-1}) \)
$2$
$[0, 1]$
2025.3
\( 3^{4} \cdot 5^{2} \)
\( 3^{12} \cdot 5^{3} \)
$1.19888$
$(2a+1), (3)$
0
$\Z/2\Z$
$\textsf{yes}$
$-4$
$\mathrm{U}(1)$
✓
✓
$5$
5Cs.4.1
$1$
\( 2^{2} \)
$1$
$3.065142573$
3.065142573
\( 1728 \)
\( \bigl[i + 1\) , \( i\) , \( i\) , \( 4 i + 2\) , \( i - 2\bigr] \)
${y}^2+\left(i+1\right){x}{y}+i{y}={x}^{3}+i{x}^{2}+\left(4i+2\right){x}+i-2$
2025.3-CMa1
2025.3-CMa
$1$
$1$
\(\Q(\sqrt{-1}) \)
$2$
$[0, 1]$
2025.3
\( 3^{4} \cdot 5^{2} \)
\( 3^{6} \cdot 5^{9} \)
$1.19888$
$(2a+1), (3)$
0
$\Z/2\Z$
$\textsf{yes}$
$-4$
$\mathrm{U}(1)$
✓
✓
$1$
\( 2^{2} \)
$1$
$2.374249228$
2.374249228
\( 1728 \)
\( \bigl[i + 1\) , \( i\) , \( 1\) , \( i + 7\) , \( 4 i - 1\bigr] \)
${y}^2+\left(i+1\right){x}{y}+{y}={x}^{3}+i{x}^{2}+\left(i+7\right){x}+4i-1$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.