Elliptic curves in class 2000.2-b over \(\Q(\sqrt{-1}) \)
Isogeny class 2000.2-b contains
8 curves linked by isogenies of
degrees dividing 12.
Curve label |
Weierstrass Coefficients |
2000.2-b1
| \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( 28 i + 53\) , \( -151 i + 109\bigr] \)
|
2000.2-b2
| \( \bigl[i + 1\) , \( 1\) , \( i + 1\) , \( 58 i + 13\) , \( 102 i + 155\bigr] \)
|
2000.2-b3
| \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( -162 i + 223\) , \( 1067 i + 1535\bigr] \)
|
2000.2-b4
| \( \bigl[i + 1\) , \( 1\) , \( i + 1\) , \( 168 i - 217\) , \( -1540 i + 1061\bigr] \)
|
2000.2-b5
| \( \bigl[i + 1\) , \( 1\) , \( i + 1\) , \( -37 i - 27\) , \( -193 i - 35\bigr] \)
|
2000.2-b6
| \( \bigl[i + 1\) , \( 1\) , \( i + 1\) , \( 3 i + 3\) , \( 5 i + 1\bigr] \)
|
2000.2-b7
| \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 6 i + 4\) , \( 4 i - 5\bigr] \)
|
2000.2-b8
| \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 166 i + 124\) , \( -108 i + 1111\bigr] \)
|
Rank: \( 0 \)
\(\left(\begin{array}{rrrrrrrr}
1 & 4 & 3 & 12 & 6 & 2 & 4 & 12 \\
4 & 1 & 12 & 3 & 6 & 2 & 4 & 12 \\
3 & 12 & 1 & 4 & 2 & 6 & 12 & 4 \\
12 & 3 & 4 & 1 & 2 & 6 & 12 & 4 \\
6 & 6 & 2 & 2 & 1 & 3 & 6 & 2 \\
2 & 2 & 6 & 6 & 3 & 1 & 2 & 6 \\
4 & 4 & 12 & 12 & 6 & 2 & 1 & 3 \\
12 & 12 & 4 & 4 & 2 & 6 & 3 & 1
\end{array}\right)\)