Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-2000.2-b
Conductor 2000.2
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 2000.2-b over \(\Q(\sqrt{-1}) \)

Isogeny class 2000.2-b contains 8 curves linked by isogenies of degrees dividing 12.

Curve label Weierstrass Coefficients
2000.2-b1 \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( 28 i + 53\) , \( -151 i + 109\bigr] \)
2000.2-b2 \( \bigl[i + 1\) , \( 1\) , \( i + 1\) , \( 58 i + 13\) , \( 102 i + 155\bigr] \)
2000.2-b3 \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( -162 i + 223\) , \( 1067 i + 1535\bigr] \)
2000.2-b4 \( \bigl[i + 1\) , \( 1\) , \( i + 1\) , \( 168 i - 217\) , \( -1540 i + 1061\bigr] \)
2000.2-b5 \( \bigl[i + 1\) , \( 1\) , \( i + 1\) , \( -37 i - 27\) , \( -193 i - 35\bigr] \)
2000.2-b6 \( \bigl[i + 1\) , \( 1\) , \( i + 1\) , \( 3 i + 3\) , \( 5 i + 1\bigr] \)
2000.2-b7 \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 6 i + 4\) , \( 4 i - 5\bigr] \)
2000.2-b8 \( \bigl[0\) , \( i + 1\) , \( 0\) , \( 166 i + 124\) , \( -108 i + 1111\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrr} 1 & 4 & 3 & 12 & 6 & 2 & 4 & 12 \\ 4 & 1 & 12 & 3 & 6 & 2 & 4 & 12 \\ 3 & 12 & 1 & 4 & 2 & 6 & 12 & 4 \\ 12 & 3 & 4 & 1 & 2 & 6 & 12 & 4 \\ 6 & 6 & 2 & 2 & 1 & 3 & 6 & 2 \\ 2 & 2 & 6 & 6 & 3 & 1 & 2 & 6 \\ 4 & 4 & 12 & 12 & 6 & 2 & 1 & 3 \\ 12 & 12 & 4 & 4 & 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph