Properties

Label 2.0.4.1-1800.2-a2
Base field \(\Q(\sqrt{-1}) \)
Conductor norm \( 1800 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Polrev([1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+4{x}-2i\)
sage: E = EllipticCurve([K([1,1]),K([0,-1]),K([0,0]),K([4,0]),K([0,-2])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([0,0]),Polrev([4,0]),Polrev([0,-2])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,-1],K![0,0],K![4,0],K![0,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((30i+30)\) = \((i+1)^{3}\cdot(-i-2)\cdot(2i+1)\cdot(3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1800 \) = \(2^{3}\cdot5\cdot5\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-3600)\) = \((i+1)^{8}\cdot(-i-2)^{2}\cdot(2i+1)^{2}\cdot(3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 12960000 \) = \(2^{8}\cdot5^{2}\cdot5^{2}\cdot9^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{470596}{225} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-i - 3 : -4 i + 4 : 1\right)$
Height \(0.11145264246342290145375427434028751960\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-2 i : i - 1 : 1\right)$ $\left(\frac{1}{2} i : -\frac{1}{4} i + \frac{1}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.11145264246342290145375427434028751960 \)
Period: \( 3.4815868857444651090958391022362644074 \)
Tamagawa product: \( 32 \)  =  \(2^{2}\cdot2\cdot2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 1.5521282335288794781623599823810252037 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((i+1)\) \(2\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(3\) \(8\) \(0\)
\((-i-2)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((2i+1)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((3)\) \(9\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 1800.2-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 120.a3
\(\Q\) 240.a3