Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
1800.2-a1 |
1800.2-a |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
1800.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
$1.16409$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$0.222905284$ |
$6.963173771$ |
1.552128233 |
\( \frac{21296}{15} \) |
\( \bigl[i + 1\) , \( -i\) , \( 0\) , \( -1\) , \( 0\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}-{x}$ |
1800.2-a2 |
1800.2-a |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
1800.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{4} \) |
$1.16409$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.111452642$ |
$3.481586885$ |
1.552128233 |
\( \frac{470596}{225} \) |
\( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 4\) , \( -2 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+4{x}-2i$ |
1800.2-a3 |
1800.2-a |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
1800.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{8} \) |
$1.16409$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.222905284$ |
$1.740793442$ |
1.552128233 |
\( \frac{136835858}{1875} \) |
\( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 34\) , \( 70 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+34{x}+70i$ |
1800.2-a4 |
1800.2-a |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
1800.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{2} \) |
$1.16409$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.222905284$ |
$1.740793442$ |
1.552128233 |
\( \frac{546718898}{405} \) |
\( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 54\) , \( -162 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+54{x}-162i$ |
1800.2-b1 |
1800.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
1800.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{16} \) |
$1.16409$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{7} \) |
$1$ |
$0.765787510$ |
1.531575020 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[i + 1\) , \( 0\) , \( 0\) , \( 20\) , \( 300 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+20{x}+300i$ |
1800.2-b2 |
1800.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
1800.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{16} \cdot 5^{2} \) |
$1.16409$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$1.531575020$ |
1.531575020 |
\( \frac{54607676}{32805} \) |
\( \bigl[i + 1\) , \( 0\) , \( 0\) , \( -20\) , \( -10 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}-20{x}-10i$ |
1800.2-b3 |
1800.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
1800.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{4} \) |
$1.16409$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$3.063150040$ |
1.531575020 |
\( \frac{3631696}{2025} \) |
\( \bigl[i + 1\) , \( 0\) , \( 0\) , \( 5\) , \( 0\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+5{x}$ |
1800.2-b4 |
1800.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
1800.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{8} \) |
$1.16409$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$1.531575020$ |
1.531575020 |
\( \frac{868327204}{5625} \) |
\( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 50\) , \( -144 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+50{x}-144i$ |
1800.2-b5 |
1800.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
1800.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
$1.16409$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$3.063150040$ |
1.531575020 |
\( \frac{24918016}{45} \) |
\( \bigl[0\) , \( 1\) , \( 0\) , \( -15\) , \( 18\bigr] \) |
${y}^2={x}^{3}+{x}^{2}-15{x}+18$ |
1800.2-b6 |
1800.2-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
1800.2 |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{4} \) |
$1.16409$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$0.765787510$ |
1.531575020 |
\( \frac{1770025017602}{75} \) |
\( \bigl[i + 1\) , \( -i\) , \( 0\) , \( 800\) , \( -8844 i\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}-i{x}^{2}+800{x}-8844i$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.