Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
16384.1-CMh1 16384.1-CMh \(\Q(\sqrt{-1}) \) \( 2^{14} \) 0 $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $1$ $4.088009945$ 2.044004972 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2 i - 2\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-2i-2\right){x}$
16384.1-CMg1 16384.1-CMg \(\Q(\sqrt{-1}) \) \( 2^{14} \) 0 $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $1$ $4.088009945$ 2.044004972 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 2 i - 2\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(2i-2\right){x}$
16384.1-CMf1 16384.1-CMf \(\Q(\sqrt{-1}) \) \( 2^{14} \) 0 $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $1$ $4.088009945$ 2.044004972 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 2 i + 2\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(2i+2\right){x}$
16384.1-CMe1 16384.1-CMe \(\Q(\sqrt{-1}) \) \( 2^{14} \) 0 $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $1$ $4.088009945$ 2.044004972 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2 i + 2\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-2i+2\right){x}$
16384.1-CMd1 16384.1-CMd \(\Q(\sqrt{-1}) \) \( 2^{14} \) 0 $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $1$ $5.781319108$ 2.890659554 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( i - 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}$
16384.1-CMc1 16384.1-CMc \(\Q(\sqrt{-1}) \) \( 2^{14} \) $2$ $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $0.271805423$ $5.781319108$ 3.142787774 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( i + 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}$
16384.1-CMb1 16384.1-CMb \(\Q(\sqrt{-1}) \) \( 2^{14} \) $2$ $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $0.271805423$ $5.781319108$ 3.142787774 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -i + 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-i+1\right){x}$
16384.1-CMa1 16384.1-CMa \(\Q(\sqrt{-1}) \) \( 2^{14} \) 0 $\Z/2\Z$ $-4$ $\mathrm{U}(1)$ $1$ $5.781319108$ 2.890659554 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -i - 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}$
16384.1-a1 16384.1-a \(\Q(\sqrt{-1}) \) \( 2^{14} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.300177438$ $5.441902473$ 3.267072692 \( -3008 a - 3328 \) \( \bigl[0\) , \( i + 1\) , \( 0\) , \( -i - 1\) , \( -2 i\bigr] \) ${y}^2={x}^{3}+\left(i+1\right){x}^{2}+\left(-i-1\right){x}-2i$
16384.1-a2 16384.1-a \(\Q(\sqrt{-1}) \) \( 2^{14} \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.300177438$ $5.441902473$ 3.267072692 \( 3008 a - 3328 \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( i - 1\) , \( -2 i\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(i-1\right){x}-2i$
16384.1-b1 16384.1-b \(\Q(\sqrt{-1}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.848006141$ 1.924003070 \( -3008 a - 3328 \) \( \bigl[0\) , \( -i\) , \( 0\) , \( -2 i + 3\) , \( i + 2\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(-2i+3\right){x}+i+2$
16384.1-b2 16384.1-b \(\Q(\sqrt{-1}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.848006141$ 1.924003070 \( 3008 a - 3328 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -2 i - 3\) , \( -2 i - 1\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-2i-3\right){x}-2i-1$
16384.1-c1 16384.1-c \(\Q(\sqrt{-1}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.848006141$ 1.924003070 \( -3008 a - 3328 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 2 i - 3\) , \( 2 i - 1\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(2i-3\right){x}+2i-1$
16384.1-c2 16384.1-c \(\Q(\sqrt{-1}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.848006141$ 1.924003070 \( 3008 a - 3328 \) \( \bigl[0\) , \( -i\) , \( 0\) , \( 2 i + 3\) , \( i - 2\bigr] \) ${y}^2={x}^{3}-i{x}^{2}+\left(2i+3\right){x}+i-2$
16384.1-d1 16384.1-d \(\Q(\sqrt{-1}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.441902473$ 2.720951236 \( -3008 a - 3328 \) \( \bigl[0\) , \( i - 1\) , \( 0\) , \( i + 1\) , \( -2\bigr] \) ${y}^2={x}^{3}+\left(i-1\right){x}^{2}+\left(i+1\right){x}-2$
16384.1-d2 16384.1-d \(\Q(\sqrt{-1}) \) \( 2^{14} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.441902473$ 2.720951236 \( 3008 a - 3328 \) \( \bigl[0\) , \( -i - 1\) , \( 0\) , \( -i + 1\) , \( -2\bigr] \) ${y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-i+1\right){x}-2$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.