Properties

Label 2.0.4.1-16200.2-b2
Base field \(\Q(\sqrt{-1}) \)
Conductor \((90i+90)\)
Conductor norm \( 16200 \)
CM no
Base change yes: 360.c1,720.a1
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, 0, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+30{x}-50i\)
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([0,0]),K([30,0]),K([0,-50])])
 
gp: E = ellinit([Pol(Vecrev([1,1])),Pol(Vecrev([0,1])),Pol(Vecrev([0,0])),Pol(Vecrev([30,0])),Pol(Vecrev([0,-50]))], K);
 
magma: E := EllipticCurve([K![1,1],K![0,1],K![0,0],K![30,0],K![0,-50]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((90i+90)\) = \((i+1)^{3}\cdot(-i-2)\cdot(2i+1)\cdot(3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16200 \) = \(2^{3}\cdot5\cdot5\cdot9^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-21600)\) = \((i+1)^{10}\cdot(-i-2)^{2}\cdot(2i+1)^{2}\cdot(3)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 466560000 \) = \(2^{10}\cdot5^{2}\cdot5^{2}\cdot9^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3721734}{25} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(0 : 5 i - 5 : 1\right)$
Height \(0.190919584552526\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{5}{2} i : -\frac{5}{4} i + \frac{5}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.190919584552526 \)
Period: \( 1.94870920223201 \)
Tamagawa product: \( 16 \)  =  \(2\cdot2\cdot2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.97637401043056 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((i+1)\) \(2\) \(2\) \(III^{*}\) Additive \(1\) \(3\) \(10\) \(0\)
\((-i-2)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((2i+1)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((3)\) \(9\) \(2\) \(III\) Additive \(1\) \(2\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 16200.2-b consists of curves linked by isogenies of degree 2.

Base change

This curve is the base change of elliptic curves 360.c1, 720.a1, defined over \(\Q\), so it is also a \(\Q\)-curve.