# Properties

 Label 2.0.4.1-1458.1-d3 Base field $$\Q(\sqrt{-1})$$ Conductor $$(27 i + 27)$$ Conductor norm $$1458$$ CM no Base change yes: 432.b3,54.b3 Q-curve yes Torsion order $$3$$ Rank $$1$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Base field$$\Q(\sqrt{-1})$$

Generator $$i$$, with minimal polynomial $$x^{2} + 1$$; class number $$1$$.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))

gp: K = nfinit(Pol(Vecrev([1, 0, 1])));

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);

## Weierstrass equation

$$y^2+ixy+iy=x^{3}+x^{2}+2x+1$$
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([0,1]),K([2,0]),K([1,0])])

gp: E = ellinit([Pol(Vecrev([0,1])),Pol(Vecrev([1,0])),Pol(Vecrev([0,1])),Pol(Vecrev([2,0])),Pol(Vecrev([1,0]))], K);

magma: E := EllipticCurve([K![0,1],K![1,0],K![0,1],K![2,0],K![1,0]]);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 Conductor: $$(27 i + 27)$$ = $$\left(i + 1\right) \cdot \left(3\right)^{3}$$ sage: E.conductor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor norm: $$1458$$ = $$2 \cdot 9^{3}$$ sage: E.conductor().norm()  gp: idealnorm(ellglobalred(E)[1])  magma: Norm(Conductor(E)); Discriminant: $$(216)$$ = $$\left(i + 1\right)^{6} \cdot \left(3\right)^{3}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); Discriminant norm: $$46656$$ = $$2^{6} \cdot 9^{3}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); j-invariant: $$\frac{9261}{8}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$

## Mordell-Weil group

 Rank: $$1$$ Generator $\left(-i : -1 : 1\right)$ Height $$0.231321420160154$$ Torsion structure: $$\Z/3\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); Torsion generator: $\left(-1 : -i : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## BSD invariants

 Analytic rank: $$1$$ sage: E.rank()  magma: Rank(E); Mordell-Weil rank: $$1$$ Regulator: $$0.231321420160154$$ Period: $$5.63513522683738$$ Tamagawa product: $$6$$  =  $$( 2 \cdot 3 )\cdot1$$ Torsion order: $$3$$ Leading coefficient: $$1.73803664462205$$ Analytic order of Ш: $$1$$ (rounded)

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(i + 1\right)$$ $$2$$ $$6$$ $$I_{6}$$ Split multiplicative $$-1$$ $$1$$ $$6$$ $$6$$
$$\left(3\right)$$ $$9$$ $$1$$ $$II$$ Additive $$-1$$ $$3$$ $$3$$ $$0$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$3$$ 3Cs.1.1

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3.
Its isogeny class 1458.1-d consists of curves linked by isogenies of degrees dividing 9.

## Base change

This curve is the base change of elliptic curves 432.b3, 54.b3, defined over $$\Q$$, so it is also a $$\Q$$-curve.