# Properties

 Label 2.0.4.1-1458.1-b2 Base field $$\Q(\sqrt{-1})$$ Conductor $$(27 i + 27)$$ Conductor norm $$1458$$ CM no Base change no Q-curve no Torsion order $$3$$ Rank $$0$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Base field$$\Q(\sqrt{-1})$$

Generator $$i$$, with minimal polynomial $$x^{2} + 1$$; class number $$1$$.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))

gp: K = nfinit(Pol(Vecrev([1, 0, 1])));

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);

## Weierstrass equation

$$y^2+xy+\left(i+1\right)y=x^{3}-x^{2}+\left(-14i-2\right)x-14i+8$$
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([1,1]),K([-2,-14]),K([8,-14])])

gp: E = ellinit([Pol(Vecrev([1,0])),Pol(Vecrev([-1,0])),Pol(Vecrev([1,1])),Pol(Vecrev([-2,-14])),Pol(Vecrev([8,-14]))], K);

magma: E := EllipticCurve([K![1,0],K![-1,0],K![1,1],K![-2,-14],K![8,-14]]);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 Conductor: $$(27 i + 27)$$ = $$\left(i + 1\right) \cdot \left(3\right)^{3}$$ sage: E.conductor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor norm: $$1458$$ = $$2 \cdot 9^{3}$$ sage: E.conductor().norm()  gp: idealnorm(ellglobalred(E)[1])  magma: Norm(Conductor(E)); Discriminant: $$(39366 i + 39366)$$ = $$\left(i + 1\right)^{3} \cdot \left(3\right)^{9}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); Discriminant norm: $$3099363912$$ = $$2^{3} \cdot 9^{9}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); j-invariant: $$-\frac{18333}{4} i + \frac{8019}{4}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$

## Mordell-Weil group

 Rank: $$0$$ Torsion structure: $$\Z/3\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); Torsion generator: $\left(-3 i - 2 : i - 4 : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## BSD invariants

 Analytic rank: $$0$$ sage: E.rank()  magma: Rank(E); Mordell-Weil rank: $$0$$ Regulator: $$1$$ Period: $$2.09827028885310$$ Tamagawa product: $$3$$  =  $$1\cdot3$$ Torsion order: $$3$$ Leading coefficient: $$0.699423429617700$$ Analytic order of Ш: $$1$$ (rounded)

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(i + 1\right)$$ $$2$$ $$1$$ $$I_{3}$$ Non-split multiplicative $$1$$ $$1$$ $$3$$ $$3$$
$$\left(3\right)$$ $$9$$ $$3$$ $$IV^*$$ Additive $$-1$$ $$3$$ $$9$$ $$0$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$3$$ 3Cs.1.1

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3.
Its isogeny class 1458.1-b consists of curves linked by isogenies of degrees dividing 9.

## Base change

This curve is not the base change of an elliptic curve defined over $$\Q$$. It is not a $$\Q$$-curve.