Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-13122.1-d
Conductor 13122.1
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 13122.1-d over \(\Q(\sqrt{-1}) \)

Isogeny class 13122.1-d contains 2 curves linked by isogenies of degree 3.

Curve label Weierstrass Coefficients
13122.1-d1 \( \bigl[1\) , \( -1\) , \( 1\) , \( -56\) , \( -161\bigr] \)
13122.1-d2 \( \bigl[1\) , \( -1\) , \( 1\) , \( 4\) , \( -1\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph