Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-13122.1-c
Conductor 13122.1
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 13122.1-c over \(\Q(\sqrt{-1}) \)

Isogeny class 13122.1-c contains 4 curves linked by isogenies of degrees dividing 21.

Curve label Weierstrass Coefficients
13122.1-c1 \( \bigl[1\) , \( -1\) , \( 1\) , \( -9695\) , \( -364985\bigr] \)
13122.1-c2 \( \bigl[i\) , \( 1\) , \( i\) , \( -4\) , \( -5\bigr] \)
13122.1-c3 \( \bigl[1\) , \( -1\) , \( 1\) , \( -95\) , \( -697\bigr] \)
13122.1-c4 \( \bigl[i\) , \( 1\) , \( i\) , \( 26\) , \( -1\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 21 & 3 & 7 \\ 21 & 1 & 7 & 3 \\ 3 & 7 & 1 & 21 \\ 7 & 3 & 21 & 1 \end{array}\right)\)

Isogeny graph