Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-13122.1-a
Conductor 13122.1
Rank \( 1 \)

Related objects

Learn more

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 13122.1-a over \(\Q(\sqrt{-1}) \)

Isogeny class 13122.1-a contains 2 curves linked by isogenies of degree 3.

Curve label Weierstrass Coefficients
13122.1-a1 \( \bigl[i\) , \( 1\) , \( 0\) , \( -6\) , \( -8\bigr] \)
13122.1-a2 \( \bigl[i\) , \( 1\) , \( 0\) , \( 39\) , \( 19\bigr] \)

Rank

Rank: \( 1 \)

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph