Learn more

Refine search


Results (18 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
12544.1-a1 12544.1-a Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 22 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1862222980.186222298 4.0162957184.016295718 2.991695286 4327 \frac{432}{7} [0 \bigl[0 , 0 0 , 0 0 , 1 -1 , 2i] 2 i\bigr] y2=x3x+2i{y}^2={x}^{3}-{x}+2i
12544.1-a2 12544.1-a Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 22 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.7448891950.744889195 1.0040739291.004073929 2.991695286 110904662401 \frac{11090466}{2401} [0 \bigl[0 , 0 0 , 0 0 , 59 59 , 138i] -138 i\bigr] y2=x3+59x138i{y}^2={x}^{3}+59{x}-138i
12544.1-a3 12544.1-a Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 22 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.7448891950.744889195 2.0081478592.008147859 2.991695286 74077249 \frac{740772}{49} [0 \bigl[0 , 0 0 , 0 0 , 19 19 , 30i] 30 i\bigr] y2=x3+19x+30i{y}^2={x}^{3}+19{x}+30i
12544.1-a4 12544.1-a Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 22 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 2.9795567812.979556781 1.0040739291.004073929 2.991695286 14434685467 \frac{1443468546}{7} [0 \bigl[0 , 0 0 , 0 0 , 299 299 , 1990i] 1990 i\bigr] y2=x3+299x+1990i{y}^2={x}^{3}+299{x}+1990i
12544.1-b1 12544.1-b Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3217421770.321742177 4.2509888104.250988810 2.735444791 198727a+152967 \frac{19872}{7} a + \frac{15296}{7} [0 \bigl[0 , i+1 -i + 1 , 0 0 , 3 -3 , i+1] i + 1\bigr] y2=x3+(i+1)x23x+i+1{y}^2={x}^{3}+\left(-i+1\right){x}^{2}-3{x}+i+1
12544.1-b2 12544.1-b Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.6434843540.643484354 2.1254944052.125494405 2.735444791 69494849a+301487 -\frac{694948}{49} a + \frac{30148}{7} [0 \bigl[0 , i+1 -i + 1 , 0 0 , 10i13 10 i - 13 , 31i13] 31 i - 13\bigr] y2=x3+(i+1)x2+(10i13)x+31i13{y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(10i-13\right){x}+31i-13
12544.1-c1 12544.1-c Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3217421770.321742177 4.2509888104.250988810 2.735444791 198727a+152967 -\frac{19872}{7} a + \frac{15296}{7} [0 \bigl[0 , i1 -i - 1 , 0 0 , 3 -3 , i1] i - 1\bigr] y2=x3+(i1)x23x+i1{y}^2={x}^{3}+\left(-i-1\right){x}^{2}-3{x}+i-1
12544.1-c2 12544.1-c Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.6434843540.643484354 2.1254944052.125494405 2.735444791 69494849a+301487 \frac{694948}{49} a + \frac{30148}{7} [0 \bigl[0 , i1 -i - 1 , 0 0 , 10i13 -10 i - 13 , 31i+13] 31 i + 13\bigr] y2=x3+(i1)x2+(10i13)x+31i+13{y}^2={x}^{3}+\left(-i-1\right){x}^{2}+\left(-10i-13\right){x}+31i+13
12544.1-d1 12544.1-d Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.6120054450.612005445 4.9905592544.990559254 3.054249441 80007 \frac{8000}{7} [0 \bigl[0 , i -i , 0 0 , 2 -2 , 0] 0\bigr] y2=x3ix22x{y}^2={x}^{3}-i{x}^{2}-2{x}
12544.1-d2 12544.1-d Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.3060027220.306002722 2.4952796272.495279627 3.054249441 12500049 \frac{125000}{49} [0 \bigl[0 , i -i , 0 0 , 8 8 , 8i] -8 i\bigr] y2=x3ix2+8x8i{y}^2={x}^{3}-i{x}^{2}+8{x}-8i
12544.1-e1 12544.1-e Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2188542830.218854283 1.969688554 5483477316251835008 -\frac{548347731625}{1835008} [0 \bigl[0 , i i , 0 0 , 2728 2728 , 55920i] 55920 i\bigr] y2=x3+ix2+2728x+55920i{y}^2={x}^{3}+i{x}^{2}+2728{x}+55920i
12544.1-e2 12544.1-e Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.9696885541.969688554 1.969688554 1562528 -\frac{15625}{28} [0 \bigl[0 , i i , 0 0 , 8 8 , 16i] -16 i\bigr] y2=x3+ix2+8x16i{y}^2={x}^{3}+i{x}^{2}+8{x}-16i
12544.1-e3 12544.1-e Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.6565628510.656562851 1.969688554 993837521952 \frac{9938375}{21952} [0 \bigl[0 , i i , 0 0 , 72 -72 , 368i] 368 i\bigr] y2=x3+ix272x+368i{y}^2={x}^{3}+i{x}^{2}-72{x}+368i
12544.1-e4 12544.1-e Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.3282814250.328281425 1.969688554 4956477625941192 \frac{4956477625}{941192} [0 \bigl[0 , i i , 0 0 , 568 568 , 4464i] 4464 i\bigr] y2=x3+ix2+568x+4464i{y}^2={x}^{3}+i{x}^{2}+568{x}+4464i
12544.1-e5 12544.1-e Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.9848442770.984844277 1.969688554 12878762598 \frac{128787625}{98} [0 \bigl[0 , i i , 0 0 , 168 168 , 784i] -784 i\bigr] y2=x3+ix2+168x784i{y}^2={x}^{3}+i{x}^{2}+168{x}-784i
12544.1-e6 12544.1-e Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.1094271410.109427141 1.969688554 225143905569962525088 \frac{2251439055699625}{25088} [0 \bigl[0 , i i , 0 0 , 43688 43688 , 3529328i] 3529328 i\bigr] y2=x3+ix2+43688x+3529328i{y}^2={x}^{3}+i{x}^{2}+43688{x}+3529328i
12544.1-f1 12544.1-f Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 3.1978696433.197869643 3.197869643 47 -\frac{4}{7} [0 \bigl[0 , i i , 0 0 , 0 0 , 4i] -4 i\bigr] y2=x3+ix24i{y}^2={x}^{3}+i{x}^{2}-4i
12544.1-f2 12544.1-f Q(1)\Q(\sqrt{-1}) 2872 2^{8} \cdot 7^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.5989348211.598934821 3.197869643 354312249 \frac{3543122}{49} [0 \bigl[0 , i i , 0 0 , 40 40 , 84i] -84 i\bigr] y2=x3+ix2+40x84i{y}^2={x}^{3}+i{x}^{2}+40{x}-84i
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.