Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-1250.3-b
Conductor 1250.3
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 1250.3-b over \(\Q(\sqrt{-1}) \)

Isogeny class 1250.3-b contains 4 curves linked by isogenies of degrees dividing 15.

Curve label Weierstrass Coefficients
1250.3-b1 \( \bigl[i\) , \( -1\) , \( i\) , \( -3137\) , \( 68969\bigr] \)
1250.3-b2 \( \bigl[i\) , \( -1\) , \( i\) , \( -2\) , \( -1\bigr] \)
1250.3-b3 \( \bigl[i\) , \( -1\) , \( i\) , \( -12\) , \( 219\bigr] \)
1250.3-b4 \( \bigl[i\) , \( -1\) , \( i\) , \( 23\) , \( 9\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 15 & 3 & 5 \\ 15 & 1 & 5 & 3 \\ 3 & 5 & 1 & 15 \\ 5 & 3 & 15 & 1 \end{array}\right)\)

Isogeny graph