Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
gp: K = nfinit(Pol(Vecrev([1, 0, 1])));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([0,1]),K([-8,0]),K([-9,0])])
gp: E = ellinit([Pol(Vecrev([0,1])),Pol(Vecrev([1,0])),Pol(Vecrev([0,1])),Pol(Vecrev([-8,0])),Pol(Vecrev([-9,0]))], K);
magma: E := EllipticCurve([K![0,1],K![1,0],K![0,1],K![-8,0],K![-9,0]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((79i+79)\) | = | \((i+1)\cdot(79)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 12482 \) | = | \(2\cdot6241\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((20224)\) | = | \((i+1)^{16}\cdot(79)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 409010176 \) | = | \(2^{16}\cdot6241\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{72511713}{20224} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(1 : 3 i : 1\right)$ |
Height | \(0.0389902803107758\) |
Torsion structure: | trivial |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 0.0389902803107758 \) | ||
Period: | \( 2.54251796458759 \) | ||
Tamagawa product: | \( 16 \) = \(2^{4}\cdot1\) | ||
Torsion order: | \(1\) | ||
Leading coefficient: | \( 3.17227162030249 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((i+1)\) | \(2\) | \(16\) | \(I_{16}\) | Split multiplicative | \(-1\) | \(1\) | \(16\) | \(16\) |
\((79)\) | \(6241\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .
Isogenies and isogeny class
This curve has no rational isogenies. Its isogeny class 12482.1-c consists of this curve only.
Base change
This curve is the base change of elliptic curves 1264.h1, 158.c1, defined over \(\Q\), so it is also a \(\Q\)-curve.