Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
100.2-a1 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $3.211547828$ 0.535257971 \( -\frac{59648644}{625} a - \frac{119744792}{625} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( 4 i - 11\) , \( 11 i - 12\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(4i-11\right){x}+11i-12$
100.2-a2 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $3.211547828$ 0.535257971 \( \frac{59648644}{625} a - \frac{119744792}{625} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -6 i - 11\) , \( -12 i - 12\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-6i-11\right){x}-12i-12$
100.2-a3 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.070515942$ 0.535257971 \( -\frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} \) \( \bigl[i + 1\) , \( -i\) , \( i + 1\) , \( 54 i - 1\) , \( -119 i - 118\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}^{2}+\left(54i-1\right){x}-119i-118$
100.2-a4 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.070515942$ 0.535257971 \( \frac{893935595564}{244140625} a - \frac{1336401187352}{244140625} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -56 i - 1\) , \( 118 i - 118\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-56i-1\right){x}+118i-118$
100.2-a5 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.141031885$ 0.535257971 \( -\frac{20720464}{15625} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i + 9\) , \( 17 i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+9\right){x}+17i$
100.2-a6 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $6.423095656$ 0.535257971 \( \frac{21296}{25} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i - 1\) , \( -i\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}-i$
100.2-a7 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $6.423095656$ 0.535257971 \( \frac{16384}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-{x}$
100.2-a8 100.2-a \(\Q(\sqrt{-1}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.141031885$ 0.535257971 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) ${y}^2={x}^{3}+{x}^{2}-41{x}-116$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.