Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp: K = nfinit(Polrev([1, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([1,0]),K([1,1]),K([0,0]),K([-1609,5809]),K([-36864,-101245])])
gp: E = ellinit([Polrev([1,0]),Polrev([1,1]),Polrev([0,0]),Polrev([-1609,5809]),Polrev([-36864,-101245])], K);
magma: E := EllipticCurve([K![1,0],K![1,1],K![0,0],K![-1609,5809],K![-36864,-101245]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((350a-240)\) | = | \((2)\cdot(5)\cdot(6a-5)^{2}\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 96100 \) | = | \(4\cdot25\cdot31^{2}\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-344335937500a+6644570312500)\) | = | \((2)^{2}\cdot(5)^{10}\cdot(6a-5)^{7}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 41980917527770996093750000 \) | = | \(4^{2}\cdot25^{10}\cdot31^{7}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{507226797683}{242187500} a + \frac{309491975847}{605468750} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(-11 a + \frac{245}{3} : -\frac{838}{9} a - \frac{6280}{9} : 1\right)$ |
Height | \(1.4984481541939309167077644566259126119\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-61 a + \frac{235}{4} : \frac{61}{2} a - \frac{235}{8} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 1.4984481541939309167077644566259126119 \) | ||
Period: | \( 0.098366399050263012957453088709664284553 \) | ||
Tamagawa product: | \( 40 \) = \(2\cdot( 2 \cdot 5 )\cdot2\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 3.4039867294299059663922946638356201705 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((2)\) | \(4\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
\((5)\) | \(25\) | \(10\) | \(I_{10}\) | Split multiplicative | \(-1\) | \(1\) | \(10\) | \(10\) |
\((6a-5)\) | \(31\) | \(2\) | \(I_{1}^{*}\) | Additive | \(-1\) | \(2\) | \(7\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
96100.3-a
consists of curves linked by isogenies of
degree 2.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.