Properties

Label 2.0.3.1-96100.3-a1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 96100 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(5809a-1609\right){x}-101245a-36864\)
sage: E = EllipticCurve([K([1,0]),K([1,1]),K([0,0]),K([-1609,5809]),K([-36864,-101245])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,1]),Polrev([0,0]),Polrev([-1609,5809]),Polrev([-36864,-101245])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,1],K![0,0],K![-1609,5809],K![-36864,-101245]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((350a-240)\) = \((2)\cdot(5)\cdot(6a-5)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 96100 \) = \(4\cdot25\cdot31^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-344335937500a+6644570312500)\) = \((2)^{2}\cdot(5)^{10}\cdot(6a-5)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 41980917527770996093750000 \) = \(4^{2}\cdot25^{10}\cdot31^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{507226797683}{242187500} a + \frac{309491975847}{605468750} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-11 a + \frac{245}{3} : -\frac{838}{9} a - \frac{6280}{9} : 1\right)$
Height \(1.4984481541939309167077644566259126119\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-61 a + \frac{235}{4} : \frac{61}{2} a - \frac{235}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.4984481541939309167077644566259126119 \)
Period: \( 0.098366399050263012957453088709664284553 \)
Tamagawa product: \( 40 \)  =  \(2\cdot( 2 \cdot 5 )\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.4039867294299059663922946638356201705 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((5)\) \(25\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)
\((6a-5)\) \(31\) \(2\) \(I_{1}^{*}\) Additive \(-1\) \(2\) \(7\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 96100.3-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.