Properties

Label 2.0.3.1-96100.2-b1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 96100 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-66{x}-241\)
sage: E = EllipticCurve([K([1,0]),K([1,0]),K([1,0]),K([-66,0]),K([-241,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,0]),Polrev([1,0]),Polrev([-66,0]),Polrev([-241,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,0],K![1,0],K![-66,0],K![-241,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((310)\) = \((2)\cdot(5)\cdot(-6a+1)\cdot(6a-5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 96100 \) = \(4\cdot25\cdot31\cdot31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1240000)\) = \((2)^{6}\cdot(5)^{4}\cdot(-6a+1)\cdot(6a-5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1537600000000 \) = \(4^{6}\cdot25^{4}\cdot31\cdot31\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{31824875809}{1240000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-6 : -5 a + 5 : 1\right)$
Height \(0.41354279824135947305203889863486105311\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(9 : -5 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.41354279824135947305203889863486105311 \)
Period: \( 1.1311882816214354726395453185496869408 \)
Tamagawa product: \( 24 \)  =  \(( 2 \cdot 3 )\cdot2^{2}\cdot1\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 6.4819544360987588146323578898230253246 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((5)\) \(25\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((-6a+1)\) \(31\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((6a-5)\) \(31\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 96100.2-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 310.b2
\(\Q\) 2790.h2