Properties

Label 2.0.3.1-87616.2-c1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 87616 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-{x}^{2}-9{x}+13\)
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([-9,0]),K([13,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-9,0]),Polrev([13,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![-9,0],K![13,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((296)\) = \((2)^{3}\cdot(-7a+4)\cdot(-7a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 87616 \) = \(4^{3}\cdot37\cdot37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((9472)\) = \((2)^{8}\cdot(-7a+4)\cdot(-7a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 89718784 \) = \(4^{8}\cdot37\cdot37\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{351232}{37} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(-\frac{40}{49} a + \frac{15}{49} : -\frac{332}{343} a - \frac{1174}{343} : 1\right)$ $\left(1 : 2 : 1\right)$
Heights \(2.5020055693588714303133251467140538093\) \(0.085352993466792815626652379363003018044\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.096991529115488959039475352146418022238 \)
Period: \( 2.7304859564233922018195193782786298351 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 4.8928635485208963645204399705601556143 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2)\) \(4\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(3\) \(8\) \(0\)
\((-7a+4)\) \(37\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-7a+3)\) \(37\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 87616.2-c consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 296.a1
\(\Q\) 2664.f1