Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp: K = nfinit(Polrev([1, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([-9,0]),K([13,0])])
gp: E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-9,0]),Polrev([13,0])], K);
magma: E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![-9,0],K![13,0]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((296)\) | = | \((2)^{3}\cdot(-7a+4)\cdot(-7a+3)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 87616 \) | = | \(4^{3}\cdot37\cdot37\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((9472)\) | = | \((2)^{8}\cdot(-7a+4)\cdot(-7a+3)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 89718784 \) | = | \(4^{8}\cdot37\cdot37\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( \frac{351232}{37} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(2\) | |
Generators | $\left(-\frac{40}{49} a + \frac{15}{49} : -\frac{332}{343} a - \frac{1174}{343} : 1\right)$ | $\left(1 : 2 : 1\right)$ |
Heights | \(2.5020055693588714303133251467140538093\) | \(0.085352993466792815626652379363003018044\) |
Torsion structure: | trivial | |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
|
BSD invariants
Analytic rank: | \( 2 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(2\) | ||
Regulator: | \( 0.096991529115488959039475352146418022238 \) | ||
Period: | \( 2.7304859564233922018195193782786298351 \) | ||
Tamagawa product: | \( 4 \) = \(2^{2}\cdot1\cdot1\) | ||
Torsion order: | \(1\) | ||
Leading coefficient: | \( 4.8928635485208963645204399705601556143 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((2)\) | \(4\) | \(4\) | \(I_{1}^{*}\) | Additive | \(-1\) | \(3\) | \(8\) | \(0\) |
\((-7a+4)\) | \(37\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
\((-7a+3)\) | \(37\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .
Isogenies and isogeny class
This curve has no rational isogenies. Its isogeny class 87616.2-c consists of this curve only.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 296.a1 |
\(\Q\) | 2664.f1 |