Properties

Label 2.0.3.1-81225.1-a8
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 81225 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-32401a-103681\right){x}-6545490a-12381240\)
sage: E = EllipticCurve([K([0,1]),K([0,1]),K([1,1]),K([-103681,-32401]),K([-12381240,-6545490])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,1]),Polrev([1,1]),Polrev([-103681,-32401]),Polrev([-12381240,-6545490])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,1],K![1,1],K![-103681,-32401],K![-12381240,-6545490]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((315a-75)\) = \((-2a+1)^{2}\cdot(-5a+3)^{2}\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 81225 \) = \(3^{2}\cdot19^{2}\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((55112400a+30300885)\) = \((-2a+1)^{14}\cdot(-5a+3)^{6}\cdot(5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 5625474760017225 \) = \(3^{14}\cdot19^{6}\cdot25\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1114544804970241}{405} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{965103}{45602} a - \frac{17005511}{91204} : -\frac{157090875}{13771804} a + \frac{4990856241}{27543608} : 1\right)$
Height \(8.0554149162572018912719081815108446876\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{109}{4} a - \frac{751}{4} : 107 a - \frac{113}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 8.0554149162572018912719081815108446876 \)
Period: \( 0.074031481477691275258490823261450506658 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 2.7544425258751457899834582203215905609 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_{8}^{*}\) Additive \(-1\) \(2\) \(14\) \(8\)
\((-5a+3)\) \(19\) \(4\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((5)\) \(25\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 81225.1-a consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.