Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp: K = nfinit(Polrev([1, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,1]),K([0,1]),K([1,1]),K([-5281,-1651]),K([-266580,-142860])])
gp: E = ellinit([Polrev([0,1]),Polrev([0,1]),Polrev([1,1]),Polrev([-5281,-1651]),Polrev([-266580,-142860])], K);
magma: E := EllipticCurve([K![0,1],K![0,1],K![1,1],K![-5281,-1651],K![-266580,-142860]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((315a-75)\) | = | \((-2a+1)^{2}\cdot(-5a+3)^{2}\cdot(5)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 81225 \) | = | \(3^{2}\cdot19^{2}\cdot25\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-29288988968400a-16103132625285)\) | = | \((-2a+1)^{38}\cdot(-5a+3)^{6}\cdot(5)\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 1588800228957229568325885225 \) | = | \(3^{38}\cdot19^{6}\cdot25\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -\frac{147281603041}{215233605} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(1\) |
Generator | $\left(\frac{73137}{1922} a - \frac{310871}{3844} : \frac{27173565}{119164} a + \frac{50951961}{238328} : 1\right)$ |
Height | \(8.0554149162572018912719081815108446876\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(\frac{51}{4} a + \frac{369}{4} : -53 a + \frac{47}{8} : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 1 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(1\) | ||
Regulator: | \( 8.0554149162572018912719081815108446876 \) | ||
Period: | \( 0.074031481477691275258490823261450506658 \) | ||
Tamagawa product: | \( 8 \) = \(2^{2}\cdot2\cdot1\) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 2.7544425258751457899834582203215905609 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((-2a+1)\) | \(3\) | \(4\) | \(I_{32}^{*}\) | Additive | \(-1\) | \(2\) | \(38\) | \(32\) |
\((-5a+3)\) | \(19\) | \(2\) | \(I_0^{*}\) | Additive | \(-1\) | \(2\) | \(6\) | \(0\) |
\((5)\) | \(25\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4, 8 and 16.
Its isogeny class
81225.1-a
consists of curves linked by isogenies of
degrees dividing 16.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.