Learn more

Refine search


Results (17 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
81225.1-a1 81225.1-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $8.055414916$ $0.074031481$ 2.754442525 \( -\frac{147281603041}{215233605} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -1651 a - 5281\) , \( -142860 a - 266580\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-1651a-5281\right){x}-142860a-266580$
81225.1-a2 81225.1-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.503463432$ $1.184503703$ 2.754442525 \( -\frac{1}{15} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -a - 1\) , \( 30 a + 60\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-a-1\right){x}+30a+60$
81225.1-a3 81225.1-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.027707458$ $0.148062962$ 2.754442525 \( \frac{4733169839}{3515625} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( 524 a + 1679\) , \( -6249 a - 13968\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(524a+1679\right){x}-6249a-13968$
81225.1-a4 81225.1-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.013853729$ $0.296125925$ 2.754442525 \( \frac{111284641}{50625} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -151 a - 481\) , \( -1200 a - 1710\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-151a-481\right){x}-1200a-1710$
81225.1-a5 81225.1-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.006926864$ $0.592251851$ 2.754442525 \( \frac{13997521}{225} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -76 a - 241\) , \( 591 a + 1422\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-76a-241\right){x}+591a+1422$
81225.1-a6 81225.1-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $4.027707458$ $0.148062962$ 2.754442525 \( \frac{272223782641}{164025} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -2026 a - 6481\) , \( -104775 a - 192360\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-2026a-6481\right){x}-104775a-192360$
81225.1-a7 81225.1-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.013853729$ $0.296125925$ 2.754442525 \( \frac{56667352321}{15} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -1201 a - 3841\) , \( 44286 a + 89262\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-1201a-3841\right){x}+44286a+89262$
81225.1-a8 81225.1-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $8.055414916$ $0.074031481$ 2.754442525 \( \frac{1114544804970241}{405} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -32401 a - 103681\) , \( -6545490 a - 12381240\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-32401a-103681\right){x}-6545490a-12381240$
81225.1-b1 81225.1-b \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.161093105$ $2.876843090$ 2.140535770 \( -\frac{331776}{5} a - \frac{221184}{5} \) \( \bigl[0\) , \( 0\) , \( a + 1\) , \( -6 a + 15\) , \( -18 a - 2\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(-6a+15\right){x}-18a-2$
81225.1-b2 81225.1-b \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.127651741$ $0.410977584$ 2.140535770 \( -\frac{285311102976}{78125} a + \frac{319450300416}{78125} \) \( \bigl[0\) , \( 0\) , \( a + 1\) , \( 1044 a - 1185\) , \( -16461 a + 10582\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(1044a-1185\right){x}-16461a+10582$
81225.1-c1 81225.1-c \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $4.699222060$ $0.166671616$ 3.617570269 \( \frac{2953216}{32805} a - \frac{8101888}{98415} \) \( \bigl[0\) , \( a + 1\) , \( a + 1\) , \( -517 a + 725\) , \( 27004 a + 3248\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-517a+725\right){x}+27004a+3248$
81225.1-d1 81225.1-d \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.264147118$ $1.348009321$ 3.289259426 \( \frac{15794551}{75} a - \frac{61746}{5} \) \( \bigl[a\) , \( a\) , \( 1\) , \( -30 a + 77\) , \( -184 a - 9\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-30a+77\right){x}-184a-9$
81225.1-d2 81225.1-d \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.528294236$ $2.696018643$ 3.289259426 \( -\frac{1621}{15} a + \frac{1349}{15} \) \( \bigl[a\) , \( a\) , \( 1\) , \( 2\) , \( -4 a - 3\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+2{x}-4a-3$
81225.1-e1 81225.1-e \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.790705359$ $0.192047993$ 4.249507442 \( \frac{1361807016381}{225625} a - \frac{2510490224016}{225625} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -3663 a + 6648\) , \( 125748 a + 67671\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-3663a+6648\right){x}+125748a+67671$
81225.1-e2 81225.1-e \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.197676339$ $0.768191972$ 4.249507442 \( \frac{19435059}{1805} a - \frac{19486224}{1805} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 42 a + 93\) , \( -492 a + 516\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(42a+93\right){x}-492a+516$
81225.1-e3 81225.1-e \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $4.790705359$ $0.192047993$ 4.249507442 \( \frac{147104989379271}{84917815205} a - \frac{100481829971616}{84917815205} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -573 a - 792\) , \( 19482 a + 969\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-573a-792\right){x}+19482a+969$
81225.1-e4 81225.1-e \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 5^{2} \cdot 19^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.395352679$ $0.384095986$ 4.249507442 \( -\frac{10985870511}{3258025} a + \frac{998993331}{651605} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -198 a + 408\) , \( 1737 a + 1584\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-198a+408\right){x}+1737a+1584$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.