Properties

Label 2.0.3.1-76800.1-b2
Base field \(\Q(\sqrt{-3}) \)
Conductor \((-320a+160)\)
Conductor norm \( 76800 \)
CM no
Base change yes: 480.a2,1440.g2
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([1, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(-a+1\right){x}^{2}+496a{x}-2204\)
sage: E = EllipticCurve([K([0,0]),K([1,-1]),K([0,0]),K([0,496]),K([-2204,0])])
 
gp: E = ellinit([Pol(Vecrev([0,0])),Pol(Vecrev([1,-1])),Pol(Vecrev([0,0])),Pol(Vecrev([0,496])),Pol(Vecrev([-2204,0]))], K);
 
magma: E := EllipticCurve([K![0,0],K![1,-1],K![0,0],K![0,496],K![-2204,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-320a+160)\) = \((-2a+1)\cdot(2)^{5}\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 76800 \) = \(3\cdot4^{5}\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5400000000)\) = \((-2a+1)^{6}\cdot(2)^{9}\cdot(5)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 29160000000000000000 \) = \(3^{6}\cdot4^{9}\cdot25^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{26410345352}{10546875} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{68}{3} a - \frac{68}{3} : -\frac{500}{9} a + \frac{250}{9} : 1\right)$
Height \(0.939882256439580\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-44 a + 44 : -300 a + 150 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.939882256439580 \)
Period: \( 0.322619754324050 \)
Tamagawa product: \( 64 \)  =  \(2\cdot2^{2}\cdot2^{3}\)
Torsion order: \(4\)
Leading coefficient: \( 2.80106871083468 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((2)\) \(4\) \(4\) \(I_0^{*}\) Additive \(-1\) \(5\) \(9\) \(0\)
\((5)\) \(25\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 76800.1-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This curve is the base change of elliptic curves 480.a2, 1440.g2, defined over \(\Q\), so it is also a \(\Q\)-curve.