Properties

Label 2.0.3.1-7203.3-b1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 7203 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+a{x}^{2}+\left(-912a+912\right){x}+10919\)
sage: E = EllipticCurve([K([0,0]),K([0,1]),K([1,0]),K([912,-912]),K([10919,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,1]),Polrev([1,0]),Polrev([912,-912]),Polrev([10919,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,1],K![1,0],K![912,-912],K![10919,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-98a+49)\) = \((-2a+1)\cdot(-3a+1)^{2}\cdot(3a-2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 7203 \) = \(3\cdot7^{2}\cdot7^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-78121827)\) = \((-2a+1)^{26}\cdot(-3a+1)^{2}\cdot(3a-2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6103019853817929 \) = \(3^{26}\cdot7^{2}\cdot7^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1713910976512}{1594323} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(78 a : -729 a + 364 : 1\right)$
Height \(0.99151044712942316397777192312828373434\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.99151044712942316397777192312828373434 \)
Period: \( 0.41695610578783595588572306773421569370 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 1.9094882578568942878120978565977180232 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_{26}\) Non-split multiplicative \(1\) \(1\) \(26\) \(26\)
\((-3a+1)\) \(7\) \(1\) \(II\) Additive \(-1\) \(2\) \(2\) \(0\)
\((3a-2)\) \(7\) \(1\) \(II\) Additive \(-1\) \(2\) \(2\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cn
\(13\) 13B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 13.
Its isogeny class 7203.3-b consists of curves linked by isogenies of degree 13.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 147.b1
\(\Q\) 441.a1