Properties

Base field \(\Q(\sqrt{-3}) \)
Label 2.0.3.1-676.2-b2
Conductor \((26)\)
Conductor norm \( 676 \)
CM no
base-change yes: 26.a2,234.e2
Q-curve yes
Torsion order \( 9 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x + 1)
 
gp: K = nfinit(a^2 - a + 1);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\( y^2 + \left(a + 1\right) x y + y = x^{3} - a x^{2} + \left(-5 a + 4\right) x - 8 \)
sage: E = EllipticCurve(K, [a + 1, -a, 1, -5*a + 4, -8])
 
gp: E = ellinit([a + 1, -a, 1, -5*a + 4, -8],K)
 
magma: E := ChangeRing(EllipticCurve([a + 1, -a, 1, -5*a + 4, -8]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((26)\) = \( \left(2\right) \cdot \left(-4 a + 1\right) \cdot \left(4 a - 3\right) \)
sage: E.conductor()
 
magma: Conductor(E);
 
\(N(\mathfrak{N}) \) = \( 676 \) = \( 4 \cdot 13^{2} \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
\(\mathfrak{D}\) = \((17576)\) = \( \left(2\right)^{3} \cdot \left(-4 a + 1\right)^{3} \cdot \left(4 a - 3\right)^{3} \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
\(N(\mathfrak{D})\) = \( 308915776 \) = \( 4^{3} \cdot 13^{6} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
\(j\) = \( -\frac{10218313}{17576} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 0 \)

sage: E.rank()
 
magma: Rank(E);
 

Regulator: 1

sage: gens = E.gens(); gens
 
magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;
 
sage: E.regulator_of_points(gens)
 
magma: Regulator(gens);
 

Torsion subgroup

Structure: \(\Z/3\Z\times\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Generators: $\left(-4 a : 4 a - 9 : 1\right)$,$\left(3 a - 2 : -a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-4 a + 1\right) \) \(13\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\( \left(4 a - 3\right) \) \(13\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\( \left(2\right) \) \(4\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs.1.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 676.2-b consists of curves linked by isogenies of degrees dividing 9.

Base change

This curve is the base-change of elliptic curves 26.a2, 234.e2, defined over \(\Q\), so it is also a \(\Q\)-curve.