Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
676.2-a1 |
676.2-a |
$2$ |
$7$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
676.2 |
\( 2^{2} \cdot 13^{2} \) |
\( 2^{2} \cdot 13^{14} \) |
$0.78920$ |
$(-4a+1), (4a-3), (2)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$7$ |
7B.1.3 |
$1$ |
\( 1 \) |
$1$ |
$0.560128502$ |
0.646780683 |
\( -\frac{1064019559329}{125497034} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -213\) , \( -1257\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-213{x}-1257$ |
676.2-a2 |
676.2-a |
$2$ |
$7$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
676.2 |
\( 2^{2} \cdot 13^{2} \) |
\( 2^{14} \cdot 13^{2} \) |
$0.78920$ |
$(-4a+1), (4a-3), (2)$ |
0 |
$\Z/7\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$7$ |
7B.1.1 |
$1$ |
\( 7 \) |
$1$ |
$3.920899519$ |
0.646780683 |
\( -\frac{2146689}{1664} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( -3\) , \( 3\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-3{x}+3$ |
676.2-b1 |
676.2-b |
$5$ |
$9$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
676.2 |
\( 2^{2} \cdot 13^{2} \) |
\( 2^{18} \cdot 13^{2} \) |
$0.78920$ |
$(-4a+1), (4a-3), (2)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$3$ |
3B.1.1[2] |
$1$ |
\( 3^{2} \) |
$1$ |
$0.896934130$ |
1.035690323 |
\( -\frac{10730978619193}{6656} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -460\) , \( -3830\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-460{x}-3830$ |
676.2-b2 |
676.2-b |
$5$ |
$9$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
676.2 |
\( 2^{2} \cdot 13^{2} \) |
\( 2^{6} \cdot 13^{6} \) |
$0.78920$ |
$(-4a+1), (4a-3), (2)$ |
0 |
$\Z/3\Z\oplus\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$3$ |
3Cs.1.1[2] |
$1$ |
\( 3^{3} \) |
$1$ |
$2.690802392$ |
1.035690323 |
\( -\frac{10218313}{17576} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -5 a + 4\) , \( -8\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-5a+4\right){x}-8$ |
676.2-b3 |
676.2-b |
$5$ |
$9$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
676.2 |
\( 2^{2} \cdot 13^{2} \) |
\( 2^{2} \cdot 13^{2} \) |
$0.78920$ |
$(-4a+1), (4a-3), (2)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$3$ |
3B.1.1[2] |
$1$ |
\( 1 \) |
$1$ |
$8.072407178$ |
1.035690323 |
\( \frac{12167}{26} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -1\) , \( 0\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}-{x}$ |
676.2-b4 |
676.2-b |
$5$ |
$9$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
676.2 |
\( 2^{2} \cdot 13^{2} \) |
\( 2^{2} \cdot 13^{10} \) |
$0.78920$ |
$(-4a+1), (4a-3), (2)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$3$ |
3B.1.1[2] |
$1$ |
\( 3^{2} \) |
$1$ |
$0.896934130$ |
1.035690323 |
\( -\frac{1824558573109097}{21208998746} a + \frac{26221448217163305}{21208998746} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 135 a + 94\) , \( 724 a - 1240\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(135a+94\right){x}+724a-1240$ |
676.2-b5 |
676.2-b |
$5$ |
$9$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
676.2 |
\( 2^{2} \cdot 13^{2} \) |
\( 2^{2} \cdot 13^{10} \) |
$0.78920$ |
$(-4a+1), (4a-3), (2)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
✓ |
|
$3$ |
3B.1.1[2] |
$1$ |
\( 3^{2} \) |
$1$ |
$0.896934130$ |
1.035690323 |
\( \frac{1824558573109097}{21208998746} a + \frac{12198444822027104}{10604499373} \) |
\( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -95 a - 136\) , \( -724 a - 516\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-95a-136\right){x}-724a-516$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.