Properties

Base field \(\Q(\sqrt{-3}) \)
Label 2.0.3.1-61731.3-c4
Conductor \((-285 a + 114)\)
Conductor norm \( 61731 \)
CM no
base-change no
Q-curve no
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x + 1)
 
gp: K = nfinit(a^2 - a + 1);
 

Weierstrass equation

\( y^2 + \left(a + 1\right) x y + \left(a + 1\right) y = x^{3} + \left(183 a + 417\right) x - 4773 a + 4499 \)
magma: E := ChangeRing(EllipticCurve([a + 1, 0, a + 1, 183*a + 417, -4773*a + 4499]),K);
 
sage: E = EllipticCurve(K, [a + 1, 0, a + 1, 183*a + 417, -4773*a + 4499])
 
gp: E = ellinit([a + 1, 0, a + 1, 183*a + 417, -4773*a + 4499],K)
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

\(\mathfrak{N} \) = \((-285 a + 114)\) = \( \left(-2 a + 1\right)^{2} \cdot \left(-5 a + 3\right) \cdot \left(-5 a + 2\right)^{2} \)
magma: Conductor(E);
 
sage: E.conductor()
 
\(N(\mathfrak{N}) \) = \( 61731 \) = \( 3^{2} \cdot 19^{3} \)
magma: Norm(Conductor(E));
 
sage: E.conductor().norm()
 
\(\mathfrak{D}\) = \((-18918927 a + 1345086)\) = \( \left(-2 a + 1\right)^{9} \cdot \left(-5 a + 3\right)^{2} \cdot \left(-5 a + 2\right)^{6} \)
magma: Discriminant(E);
 
sage: E.discriminant()
 
gp: E.disc
 
\(N(\mathfrak{D})\) = \( 334287471336003 \) = \( 3^{9} \cdot 19^{8} \)
magma: Norm(Discriminant(E));
 
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
\(j\) = \( -\frac{363527109}{361} a + \frac{287391186}{361} \)
magma: jInvariant(E);
 
sage: E.j_invariant()
 
gp: E.j
 
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
 
sage: E.has_cm(), E.cm_discriminant()
 
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.

magma: Rank(E);
 
sage: E.rank()
 

Regulator: not available

magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;
 
sage: gens = E.gens(); gens
 
magma: Regulator(gens);
 
sage: E.regulator_of_points(gens)
 

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
Generator: $\left(\frac{61}{4} a - 10 : -\frac{43}{4} a + \frac{97}{8} : 1\right)$
magma: [piT(P) : P in Generators(T)];
 
sage: T.gens()
 
gp: T[3]
 

Local data at primes of bad reduction

magma: LocalInformation(E);
 
sage: E.local_data()
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-2 a + 1\right) \) \(3\) \(2\) \(III^*\) Additive \(1\) \(2\) \(9\) \(0\)
\( \left(-5 a + 3\right) \) \(19\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\( \left(-5 a + 2\right) \) \(19\) \(2\) \(I_{0}^*\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 61731.3-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.