Properties

Label 2.0.3.1-61731.3-a4
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 61731 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(141a-588\right){x}+2064a-5467\)
sage: E = EllipticCurve([K([0,0]),K([-1,-1]),K([1,0]),K([-588,141]),K([-5467,2064])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,-1]),Polrev([1,0]),Polrev([-588,141]),Polrev([-5467,2064])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,-1],K![1,0],K![-588,141],K![-5467,2064]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-285a+114)\) = \((-2a+1)^{2}\cdot(-5a+3)\cdot(-5a+2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 61731 \) = \(3^{2}\cdot19\cdot19^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((933372720a-1446542523)\) = \((-2a+1)^{6}\cdot(-5a+3)^{3}\cdot(-5a+2)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1613506575999231369 \) = \(3^{6}\cdot19^{3}\cdot19^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{89915392}{6859} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-16 a + 17 : -135 a + 25 : 1\right)$
Height \(0.39417640700730045944100003547580605365\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.39417640700730045944100003547580605365 \)
Period: \( 0.37165411366016397020684120814003326711 \)
Tamagawa product: \( 8 \)  =  \(2\cdot1\cdot2^{2}\)
Torsion order: \(1\)
Leading coefficient: \( 2.7065678679977524189220355979157074128 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((-5a+3)\) \(19\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((-5a+2)\) \(19\) \(4\) \(I_{3}^{*}\) Additive \(-1\) \(2\) \(9\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 61731.3-a consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.