Learn more

Refine search


Results (23 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
61731.3-a1 61731.3-a Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 1.1825292211.182529221 0.1238847040.123884704 2.706567867 5035787105075219 -\frac{50357871050752}{19} [0 \bigl[0 , a1 -a - 1 , 1 1 , 36929a+11540 36929 a + 11540 , 1351376a4007862] 1351376 a - 4007862\bigr] y2+y=x3+(a1)x2+(36929a+11540)x+1351376a4007862{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(36929a+11540\right){x}+1351376a-4007862
61731.3-a2 61731.3-a Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 1.1825292211.182529221 0.1238847040.123884704 2.706567867 14306161739497472322687697779a27123251845038080322687697779 \frac{14306161739497472}{322687697779} a - \frac{27123251845038080}{322687697779} [0 \bigl[0 , a1 -a - 1 , 1 1 , 7731a4308 7731 a - 4308 , 195516a34450] -195516 a - 34450\bigr] y2+y=x3+(a1)x2+(7731a4308)x195516a34450{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(7731a-4308\right){x}-195516a-34450
61731.3-a3 61731.3-a Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 1.1825292211.182529221 0.1238847040.123884704 2.706567867 14306161739497472322687697779a12817090105540608322687697779 -\frac{14306161739497472}{322687697779} a - \frac{12817090105540608}{322687697779} [0 \bigl[0 , a1 -a - 1 , 1 1 , 6699a18 -6699 a - 18 , 251154a123514] 251154 a - 123514\bigr] y2+y=x3+(a1)x2+(6699a18)x+251154a123514{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6699a-18\right){x}+251154a-123514
61731.3-a4 61731.3-a Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.3941764070.394176407 0.3716541130.371654113 2.706567867 899153926859 -\frac{89915392}{6859} [0 \bigl[0 , a1 -a - 1 , 1 1 , 141a588 141 a - 588 , 2064a5467] 2064 a - 5467\bigr] y2+y=x3+(a1)x2+(141a588)x+2064a5467{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(141a-588\right){x}+2064a-5467
61731.3-a5 61731.3-a Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.1313921350.131392135 1.1149623401.114962340 2.706567867 3276819 \frac{32768}{19} [0 \bigl[0 , a1 -a - 1 , 1 1 , 43a32 43 a - 32 , 16a+20] -16 a + 20\bigr] y2+y=x3+(a1)x2+(43a32)x16a+20{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(43a-32\right){x}-16a+20
61731.3-b1 61731.3-b Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.1081046550.108104655 0.998628029 724015265546973450950689123a551283266659906750950689123 \frac{7240152655469734}{50950689123} a - \frac{5512832666599067}{50950689123} [a+1 \bigl[a + 1 , a1 -a - 1 , a a , 9143a+10240 -9143 a + 10240 , 68164a+329450] 68164 a + 329450\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(9143a+10240)x+68164a+329450{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-9143a+10240\right){x}+68164a+329450
61731.3-b2 61731.3-b Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2162093100.216209310 0.998628029 67419143390963 \frac{67419143}{390963} [a+1 \bigl[a + 1 , a1 -a - 1 , a a , 128a+535 -128 a + 535 , 4787a+13769] -4787 a + 13769\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(128a+535)x4787a+13769{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-128a+535\right){x}-4787a+13769
61731.3-b3 61731.3-b Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8648372420.864837242 0.998628029 38901757 \frac{389017}{57} [a+1 \bigl[a + 1 , a1 -a - 1 , a a , 22a95 22 a - 95 , 103a271] 103 a - 271\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(22a95)x+103a271{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(22a-95\right){x}+103a-271
61731.3-b4 61731.3-b Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.4324186210.432418621 0.998628029 306642973249 \frac{30664297}{3249} [a+1 \bigl[a + 1 , a1 -a - 1 , a a , 97a410 97 a - 410 , 980a+2978] -980 a + 2978\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(97a410)x980a+2978{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(97a-410\right){x}-980a+2978
61731.3-b5 61731.3-b Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.1081046550.108104655 0.998628029 724015265546973450950689123a+172731998887066750950689123 -\frac{7240152655469734}{50950689123} a + \frac{1727319988870667}{50950689123} [a+1 \bigl[a + 1 , a1 -a - 1 , a a , 5287a+5950 5287 a + 5950 , 322106a+404732] -322106 a + 404732\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(5287a+5950)x322106a+404732{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(5287a+5950\right){x}-322106a+404732
61731.3-b6 61731.3-b Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2162093100.216209310 0.998628029 1157148866171539 \frac{115714886617}{1539} [a+1 \bigl[a + 1 , a1 -a - 1 , a a , 1522a6395 1522 a - 6395 , 66245a+194783] -66245 a + 194783\bigr] y2+(a+1)xy+ay=x3+(a1)x2+(1522a6395)x66245a+194783{y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1522a-6395\right){x}-66245a+194783
61731.3-c1 61731.3-c Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0780915331.078091533 1.244872874 298407216859a352672326859 \frac{29840721}{6859} a - \frac{35267232}{6859} [a+1 \bigl[a + 1 , a1 -a - 1 , 0 0 , 16a40 -16 a - 40 , 81a75] -81 a - 75\bigr] y2+(a+1)xy=x3+(a1)x2+(16a40)x81a75{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-16a-40\right){x}-81a-75
61731.3-c2 61731.3-c Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5390457660.539045766 1.244872874 3603818163347045881a3954696231347045881 -\frac{36038181633}{47045881} a - \frac{39546962313}{47045881} [a+1 \bigl[a + 1 , a1 -a - 1 , 0 0 , 146a+145 -146 a + 145 , 222a1131] 222 a - 1131\bigr] y2+(a+1)xy=x3+(a1)x2+(146a+145)x+222a1131{y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-146a+145\right){x}+222a-1131
61731.3-c3 61731.3-c Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0780915331.078091533 1.244872874 915319a+3680119 -\frac{9153}{19} a + \frac{36801}{19} [a+1 \bigl[a + 1 , 0 0 , a+1 a + 1 , 18a+27 18 a + 27 , 45a+20] -45 a + 20\bigr] y2+(a+1)xy+(a+1)y=x3+(18a+27)x45a+20{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(18a+27\right){x}-45a+20
61731.3-c4 61731.3-c Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5390457660.539045766 1.244872874 363527109361a+287391186361 -\frac{363527109}{361} a + \frac{287391186}{361} [a+1 \bigl[a + 1 , 0 0 , a+1 a + 1 , 183a+417 183 a + 417 , 4773a+4499] -4773 a + 4499\bigr] y2+(a+1)xy+(a+1)y=x3+(183a+417)x4773a+4499{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(183a+417\right){x}-4773a+4499
61731.3-d1 61731.3-d Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.0359962630.035996263 0.831298097 935871446716825622284891 -\frac{9358714467168256}{22284891} [0 \bigl[0 , a1 -a - 1 , 1 1 , 65856a276591 65856 a - 276591 , 18858975a54638371] 18858975 a - 54638371\bigr] y2+y=x3+(a1)x2+(65856a276591)x+18858975a54638371{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(65856a-276591\right){x}+18858975a-54638371
61731.3-d2 61731.3-d Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.1799813170.179981317 0.831298097 8412323841121931 \frac{841232384}{1121931} [0 \bigl[0 , a1 -a - 1 , 1 1 , 294a+1239 -294 a + 1239 , 6225a19261] 6225 a - 19261\bigr] y2+y=x3+(a1)x2+(294a+1239)x+6225a19261{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-294a+1239\right){x}+6225a-19261
61731.3-e1 61731.3-e Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.3711112350.371111235 1.714089374 1024000513a512000171 -\frac{1024000}{513} a - \frac{512000}{171} [0 \bigl[0 , a1 -a - 1 , 1 1 , 366a450 366 a - 450 , 4386a+3212] -4386 a + 3212\bigr] y2+y=x3+(a1)x2+(366a450)x4386a+3212{y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(366a-450\right){x}-4386a+3212
61731.3-f1 61731.3-f Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.7057961550.705796155 3.259932801 1404928171 -\frac{1404928}{171} [0 \bigl[0 , a+1 a + 1 , 1 1 , 36a147 36 a - 147 , 279a+677] -279 a + 677\bigr] y2+y=x3+(a+1)x2+(36a147)x279a+677{y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(36a-147\right){x}-279a+677
61731.3-g1 61731.3-g Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 2.7690401072.769040107 0.3561669280.356166928 4.555249792 5845799184130321a4133064549130321 \frac{5845799184}{130321} a - \frac{4133064549}{130321} [1 \bigl[1 , a+1 -a + 1 , 1 1 , 238a817 238 a - 817 , 3795a8972] 3795 a - 8972\bigr] y2+xy+y=x3+(a+1)x2+(238a817)x+3795a8972{y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(238a-817\right){x}+3795a-8972
61731.3-g2 61731.3-g Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.3845200531.384520053 0.7123338560.712333856 4.555249792 61536361a40335361 \frac{61536}{361} a - \frac{40335}{361} [1 \bigl[1 , a+1 -a + 1 , 1 1 , 42a2 -42 a - 2 , 343a394] 343 a - 394\bigr] y2+xy+y=x3+(a+1)x2+(42a2)x+343a394{y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-42a-2\right){x}+343a-394
61731.3-h1 61731.3-h Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.8963337800.896333780 4.139988395 5845799184130321a4133064549130321 \frac{5845799184}{130321} a - \frac{4133064549}{130321} [a \bigl[a , a+1 -a + 1 , a a , 7a118 7 a - 118 , 7a+466] -7 a + 466\bigr] y2+axy+ay=x3+(a+1)x2+(7a118)x7a+466{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(7a-118\right){x}-7a+466
61731.3-h2 61731.3-h Q(3)\Q(\sqrt{-3}) 32193 3^{2} \cdot 19^{3} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.7926675601.792667560 4.139988395 61536361a40335361 \frac{61536}{361} a - \frac{40335}{361} [a \bigl[a , a+1 -a + 1 , a a , 8a+2 -8 a + 2 , 16a+25] -16 a + 25\bigr] y2+axy+ay=x3+(a+1)x2+(8a+2)x16a+25{y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-8a+2\right){x}-16a+25
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.