Learn more

Refine search


Results (23 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
61731.3-a1 61731.3-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.182529221$ $0.123884704$ 2.706567867 \( -\frac{50357871050752}{19} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 36929 a + 11540\) , \( 1351376 a - 4007862\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(36929a+11540\right){x}+1351376a-4007862$
61731.3-a2 61731.3-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.182529221$ $0.123884704$ 2.706567867 \( \frac{14306161739497472}{322687697779} a - \frac{27123251845038080}{322687697779} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 7731 a - 4308\) , \( -195516 a - 34450\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(7731a-4308\right){x}-195516a-34450$
61731.3-a3 61731.3-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.182529221$ $0.123884704$ 2.706567867 \( -\frac{14306161739497472}{322687697779} a - \frac{12817090105540608}{322687697779} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( -6699 a - 18\) , \( 251154 a - 123514\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6699a-18\right){x}+251154a-123514$
61731.3-a4 61731.3-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.394176407$ $0.371654113$ 2.706567867 \( -\frac{89915392}{6859} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 141 a - 588\) , \( 2064 a - 5467\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(141a-588\right){x}+2064a-5467$
61731.3-a5 61731.3-a \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.131392135$ $1.114962340$ 2.706567867 \( \frac{32768}{19} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 43 a - 32\) , \( -16 a + 20\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(43a-32\right){x}-16a+20$
61731.3-b1 61731.3-b \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.108104655$ 0.998628029 \( \frac{7240152655469734}{50950689123} a - \frac{5512832666599067}{50950689123} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a\) , \( -9143 a + 10240\) , \( 68164 a + 329450\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-9143a+10240\right){x}+68164a+329450$
61731.3-b2 61731.3-b \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.216209310$ 0.998628029 \( \frac{67419143}{390963} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a\) , \( -128 a + 535\) , \( -4787 a + 13769\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-128a+535\right){x}-4787a+13769$
61731.3-b3 61731.3-b \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.864837242$ 0.998628029 \( \frac{389017}{57} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a\) , \( 22 a - 95\) , \( 103 a - 271\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(22a-95\right){x}+103a-271$
61731.3-b4 61731.3-b \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.432418621$ 0.998628029 \( \frac{30664297}{3249} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a\) , \( 97 a - 410\) , \( -980 a + 2978\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(97a-410\right){x}-980a+2978$
61731.3-b5 61731.3-b \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.108104655$ 0.998628029 \( -\frac{7240152655469734}{50950689123} a + \frac{1727319988870667}{50950689123} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a\) , \( 5287 a + 5950\) , \( -322106 a + 404732\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(5287a+5950\right){x}-322106a+404732$
61731.3-b6 61731.3-b \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.216209310$ 0.998628029 \( \frac{115714886617}{1539} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a\) , \( 1522 a - 6395\) , \( -66245 a + 194783\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1522a-6395\right){x}-66245a+194783$
61731.3-c1 61731.3-c \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.078091533$ 1.244872874 \( \frac{29840721}{6859} a - \frac{35267232}{6859} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -16 a - 40\) , \( -81 a - 75\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-16a-40\right){x}-81a-75$
61731.3-c2 61731.3-c \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.539045766$ 1.244872874 \( -\frac{36038181633}{47045881} a - \frac{39546962313}{47045881} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -146 a + 145\) , \( 222 a - 1131\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-146a+145\right){x}+222a-1131$
61731.3-c3 61731.3-c \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.078091533$ 1.244872874 \( -\frac{9153}{19} a + \frac{36801}{19} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 18 a + 27\) , \( -45 a + 20\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(18a+27\right){x}-45a+20$
61731.3-c4 61731.3-c \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.539045766$ 1.244872874 \( -\frac{363527109}{361} a + \frac{287391186}{361} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 183 a + 417\) , \( -4773 a + 4499\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(183a+417\right){x}-4773a+4499$
61731.3-d1 61731.3-d \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.035996263$ 0.831298097 \( -\frac{9358714467168256}{22284891} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 65856 a - 276591\) , \( 18858975 a - 54638371\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(65856a-276591\right){x}+18858975a-54638371$
61731.3-d2 61731.3-d \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.179981317$ 0.831298097 \( \frac{841232384}{1121931} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( -294 a + 1239\) , \( 6225 a - 19261\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-294a+1239\right){x}+6225a-19261$
61731.3-e1 61731.3-e \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.371111235$ 1.714089374 \( -\frac{1024000}{513} a - \frac{512000}{171} \) \( \bigl[0\) , \( -a - 1\) , \( 1\) , \( 366 a - 450\) , \( -4386 a + 3212\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(366a-450\right){x}-4386a+3212$
61731.3-f1 61731.3-f \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.705796155$ 3.259932801 \( -\frac{1404928}{171} \) \( \bigl[0\) , \( a + 1\) , \( 1\) , \( 36 a - 147\) , \( -279 a + 677\bigr] \) ${y}^2+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(36a-147\right){x}-279a+677$
61731.3-g1 61731.3-g \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.769040107$ $0.356166928$ 4.555249792 \( \frac{5845799184}{130321} a - \frac{4133064549}{130321} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 238 a - 817\) , \( 3795 a - 8972\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(238a-817\right){x}+3795a-8972$
61731.3-g2 61731.3-g \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.384520053$ $0.712333856$ 4.555249792 \( \frac{61536}{361} a - \frac{40335}{361} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -42 a - 2\) , \( 343 a - 394\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-42a-2\right){x}+343a-394$
61731.3-h1 61731.3-h \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.896333780$ 4.139988395 \( \frac{5845799184}{130321} a - \frac{4133064549}{130321} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 7 a - 118\) , \( -7 a + 466\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(7a-118\right){x}-7a+466$
61731.3-h2 61731.3-h \(\Q(\sqrt{-3}) \) \( 3^{2} \cdot 19^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.792667560$ 4.139988395 \( \frac{61536}{361} a - \frac{40335}{361} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -8 a + 2\) , \( -16 a + 25\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-8a+2\right){x}-16a+25$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.