Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp: K = nfinit(Polrev([1, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([1,0]),K([-343,0]),K([-4202,0])])
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([1,0]),Polrev([-343,0]),Polrev([-4202,0])], K);
magma: E := EllipticCurve([K![0,0],K![0,0],K![1,0],K![-343,0],K![-4202,0]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((245)\) | = | \((-3a+1)^{2}\cdot(3a-2)^{2}\cdot(5)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 60025 \) | = | \(7^{2}\cdot7^{2}\cdot25\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-5044200875)\) | = | \((-3a+1)^{9}\cdot(3a-2)^{9}\cdot(5)^{3}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 25443962467350765625 \) | = | \(7^{9}\cdot7^{9}\cdot25^{3}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -\frac{110592}{125} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) |
Torsion structure: | trivial |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 0.32877274630903451828095573016616402771 \) | ||
Tamagawa product: | \( 12 \) = \(2\cdot2\cdot3\) | ||
Torsion order: | \(1\) | ||
Leading coefficient: | \( 4.5556088060096068710820392447707705343 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((-3a+1)\) | \(7\) | \(2\) | \(III^{*}\) | Additive | \(-1\) | \(2\) | \(9\) | \(0\) |
\((3a-2)\) | \(7\) | \(2\) | \(III^{*}\) | Additive | \(-1\) | \(2\) | \(9\) | \(0\) |
\((5)\) | \(25\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3Nn[2] |
Isogenies and isogeny class
This curve has no rational isogenies. Its isogeny class 60025.3-i consists of this curve only.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 245.b1 |
\(\Q\) | 2205.l1 |