Properties

Label 2.0.3.1-60025.3-b1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 60025 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+a{x}^{2}+\left(-6435a+6435\right){x}+210006\)
sage: E = EllipticCurve([K([0,0]),K([0,1]),K([1,0]),K([6435,-6435]),K([210006,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,1]),Polrev([1,0]),Polrev([6435,-6435]),Polrev([210006,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,1],K![1,0],K![6435,-6435],K![210006,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((245)\) = \((-3a+1)^{2}\cdot(3a-2)^{2}\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 60025 \) = \(7^{2}\cdot7^{2}\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1608482421875)\) = \((-3a+1)^{7}\cdot(3a-2)^{7}\cdot(5)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2587215701480865478515625 \) = \(7^{7}\cdot7^{7}\cdot25^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{250523582464}{13671875} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(2\)
Generators $\left(-40 a : -123 : 1\right)$ $\left(-\frac{6830}{169} a + \frac{4375}{169} : -\frac{551250}{2197} a + \frac{810464}{2197} : 1\right)$
Heights \(0.040819755796108153836983333499773286672\) \(1.0244963984471979518286907540496236364\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(2\)
Regulator: \( 0.041403129682793460905575165779936062414 \)
Period: \( 0.11071074317585600434147154573851130930 \)
Tamagawa product: \( 144 \)  =  \(2^{2}\cdot2^{2}\cdot3^{2}\)
Torsion order: \(1\)
Leading coefficient: \( 3.0487006876330670149837413835501085792 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a+1)\) \(7\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(2\) \(7\) \(1\)
\((3a-2)\) \(7\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(2\) \(7\) \(1\)
\((5)\) \(25\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 60025.3-b consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 245.c1
\(\Q\) 2205.e1