# Properties

 Base field $$\Q(\sqrt{-3})$$ Label 2.0.3.1-5929.2-b3 Conductor $$(77)$$ Conductor norm $$5929$$ CM no base-change yes: 693.b3,77.b3 Q-curve yes Torsion order $$3$$ Rank $$0$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Base field $$\Q(\sqrt{-3})$$

Generator $$a$$, with minimal polynomial $$x^{2} - x + 1$$; class number $$1$$.

sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x + 1)

gp: K = nfinit(a^2 - a + 1);

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);

## Weierstrass equation

$$y^2 + y = x^{3} + \left(a - 1\right) x^{2} - 441 a x - 15815$$
sage: E = EllipticCurve(K, [0, a - 1, 1, -441*a, -15815])

gp: E = ellinit([0, a - 1, 1, -441*a, -15815],K)

magma: E := ChangeRing(EllipticCurve([0, a - 1, 1, -441*a, -15815]),K);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 $$\mathfrak{N}$$ = $$(77)$$ = $$\left(-3 a + 1\right) \cdot \left(3 a - 2\right) \cdot \left(11\right)$$ sage: E.conductor()  magma: Conductor(E); $$N(\mathfrak{N})$$ = $$5929$$ = $$7^{2} \cdot 121$$ sage: E.conductor().norm()  magma: Norm(Conductor(E)); $$\mathfrak{D}$$ = $$(115539436859)$$ = $$\left(-3 a + 1\right)^{2} \cdot \left(3 a - 2\right)^{2} \cdot \left(11\right)^{9}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); $$N(\mathfrak{D})$$ = $$13349361469694847785881$$ = $$7^{4} \cdot 121^{9}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); $$j$$ = $$\frac{9463555063808}{115539436859}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); $$\text{End} (E)$$ = $$\Z$$ (no Complex Multiplication ) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); $$\text{ST} (E)$$ = $\mathrm{SU}(2)$

## Mordell-Weil group

Rank: $$0$$

sage: E.rank()

magma: Rank(E);

sage: gens = E.gens(); gens

magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;

sage: E.regulator_of_points(gens)

magma: Regulator(gens);

## Torsion subgroup

Structure: $$\Z/3\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); $\left(-\frac{4}{3} a + \frac{4}{3} : -\frac{1331}{9} a + \frac{661}{9} : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(-3 a + 1\right)$$ $$7$$ $$2$$ $$I_{2}$$ Split multiplicative $$-1$$ $$1$$ $$2$$ $$2$$
$$\left(3 a - 2\right)$$ $$7$$ $$2$$ $$I_{2}$$ Split multiplicative $$-1$$ $$1$$ $$2$$ $$2$$
$$\left(11\right)$$ $$121$$ $$9$$ $$I_{9}$$ Split multiplicative $$-1$$ $$1$$ $$9$$ $$9$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$3$$ 3B.1.1[2]

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3 and 9.
Its isogeny class 5929.2-b consists of curves linked by isogenies of degrees dividing 9.

## Base change

This curve is the base-change of elliptic curves 693.b3, 77.b3, defined over $$\Q$$, so it is also a $$\Q$$-curve.