Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp: K = nfinit(Polrev([1, -1, 1]));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,0]),K([-1,1]),K([1,0]),K([0,49]),K([600,0])])
gp: E = ellinit([Polrev([0,0]),Polrev([-1,1]),Polrev([1,0]),Polrev([0,49]),Polrev([600,0])], K);
magma: E := EllipticCurve([K![0,0],K![-1,1],K![1,0],K![0,49],K![600,0]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \((77)\) | = | \((-3a+1)\cdot(3a-2)\cdot(11)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 5929 \) | = | \(7\cdot7\cdot121\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \((-156590819)\) | = | \((-3a+1)^{6}\cdot(3a-2)^{6}\cdot(11)^{3}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 24520684595090761 \) | = | \(7^{6}\cdot7^{6}\cdot121^{3}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -\frac{13278380032}{156590819} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $\mathrm{SU}(2)$ |
Mordell-Weil group
Rank: | \(0\) | |
Torsion structure: | \(\Z/3\Z\oplus\Z/3\Z\) | |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| ||
Torsion generators: | $\left(2 a - 13 : -44 a + 16 : 1\right)$ | $\left(0 : -25 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 0.60132907418281650513706266056939016620 \) | ||
Tamagawa product: | \( 108 \) = \(( 2 \cdot 3 )\cdot( 2 \cdot 3 )\cdot3\) | ||
Torsion order: | \(9\) | ||
Leading coefficient: | \( 0.92580667426932679955204861122285511996 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\((-3a+1)\) | \(7\) | \(6\) | \(I_{6}\) | Split multiplicative | \(-1\) | \(1\) | \(6\) | \(6\) |
\((3a-2)\) | \(7\) | \(6\) | \(I_{6}\) | Split multiplicative | \(-1\) | \(1\) | \(6\) | \(6\) |
\((11)\) | \(121\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3Cs.1.1[2] |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3.
Its isogeny class
5929.2-b
consists of curves linked by isogenies of
degrees dividing 9.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 77.b2 |
\(\Q\) | 693.b2 |